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Abstract

A method for determining which natural numbers satisfy reciprocity is given. The method
is applicable to quadratic, cubic, quintic, and in general “prime” reciprocity. The method
is also applicable to biquadratic reciprocity. The even powers of a primitive root of a
prime are quadratic residues and the odd powers are quadratic nonresidues. This is
generalized to cubic residues and nonresidues, etc. Let n denote the “degree” of prime
reciprocity (2 for quadratic reciprocity, 3 for cubic reciprocity, 5 for quintic reciprocity,
etc.). The residues and nonresidues are determined for the degree 2n and applied to the
degree of n. For example, the residues and nonresidues for biquadratic reciprocity are used
to analyze quadratic reciprocity. For a degree of 2n, there are 2 groups of residues of the
same size and 2n – 2 groups of nonresidues all the same size as each of the two groups of
residues. Each of the 2n groups is mapped to certain differences modulo p of the sorted
least residues of one of the groups of nonresidues. This is a one-to-one transformation
since it does not change the elements of a group. When certain counts associated with the
differences are not distinct, groups are effectively merged together. The number of distinct
difference counts will be referred to as the “degrees of freedom”. For quadratic reciprocity,
there are either 1 or 2 degrees of freedom. For quintic reciprocity, there are up to 5 degrees
of freedom and as few as 2 degrees of freedom. This transformation is useful for identifying
properties of the residues and nonresidues. Also, reciprocity is not entirely restricted to
primes. Reciprocity is interpreted as being a collection of finite commutative groups.

* Corresponding author: Eldar Sultanow, Potsdam University, Chair of Business Informatics, Processes and Systems, Potsdam,
Germany. E-mail: Eldar.Sultanow@wi.uni-potsdam.de

Quadratic, Cubic, Biquadratic, and Quintic Reciprocity

Darrell Cox1, Sourangshu Ghosh2 and Eldar Sultanow3*

1Department of Mathematics, Grayson County College, United States. E-mail: darrellcox97@gmail.com
2Department of Civil Engineering, Indian Institute of Technology Kharagpur, India. E-mail: sourangshug123@gmail.com
3Potsdam University, Chair of Business Informatics, Processes and Systems, Potsdam, Germany. E-mail: Eldar.Sultanow@wi.uni-potsdam.de

1. Introduction

Let p be an odd prime. If the congruence 2x n (mod p) has a solution, we say that n is a quadratic residue mod p and
write nRp. If the congruence has no solution we say that n is a quadratic nonresidue mod p and write nRp. If 0n  (mod
p) we define Legendre’s symbol (n|p) as follows: (n|p) = +1 if nRp or –1 if nRp. If n = 0(mod p) we define (n|p) = 0.

The quadratic reciprocity law (first proved by Gauss) states that if p and q are distinct odd primes, then (p|q) = (q|p)
unless p   q   3(mod 4), in which case (p|q) = –(q|p).
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A form of rational cubic reciprocity dates back to Jacobi. He reportedly proved the following:

Theorem 1: Let q > 3 be a prime. Then there is a set S of 
1 3

3
q

q

  
  
  

elements of Z qZ   with the following

property. If p is a prime distinct from q with p   1(mod 3) and 4p = L2 + 27M2 (and L, M > 0), then q is a cube modulo

 mod
3

L
p q S

M
  .

For example, for q = 37, S = {0, ±1, ±3, ±4, ±10, ±15,  }. There are (q – 1)/3 classes if q   1(mod 3) and (q + 1)/3

classes otherwise. This can be written in a unified way as 
1 3

3
q

q

  
  
  

 since 
3

q

 
 
 

 equals 1 if q   1(mod 3) or –1 if

q   –1(mod 3). Also, if p   1(mod 3) we can write 4p = L2 + 27M2. In this representation, L and M are unique up to the
choice of sign. The Sun (1998) Rational Cubic Reciprocity Law is:

Theorem 2: Let q > 3 be a prime. If p   q is a prime congruent to 1 (mod 3) where 4p = L2 + 27M2 with positive L and M,

then q is a cube modulo 
3

L
p

M
 is a cube in G.

G is defined as follows. Take Z qZ   and remove any square root of –3 and let G(q) be the resulting set. In

general, #G = 
3

q
q

 
  
 

. For x and y residue classes mod q contained in G, we define 3
*

xy
x y

x y





, the computation

taking place in Z/qZ. If the denominator but not the numerator vanishes, the result is set to  . We also define x * 
=   * x and   *   =  . This operation is commutative. An identity element is  . The inverse of x is –x and the
inverse of   is  . Also, * is associative so * makes G into a finite commutative group. The group G has a unique cyclic

subgroup of order #G/3 
1 3

3
q

q

  
   

  
. It is just the subgroup of “cubes” g * g * g with g   G.

Sun’s (2001) Rational Quartic Reciprocity Law is similar. Nothing this sophisticated is needed in this paper. When q
is a nth power modulo p is determined using primitive roots.

1.1. Primitive Roots

An integer g is called a primitive root of a prime q if q does not divide g and 1dg  (mod q) for any natural number d less
than q – 1. Primitive roots exist for prime powers. Theorem 10.6 of Apostol’s (1976) book is:

Theorem 3: Let p be an odd prime. Then we have:

a) If g is a primitive root mod p then g is also a primitive root mod p for all  > 1 if, and only if, 1 1pg   (mod p2).

b) There is at least one primitive root g mod p which satisfies (5), hence there exists at least one primitive root mod p

if  > 2.

Theorem 10.5 of Apostol’s book is

Theorem 4: Let g be a primitive root mod p, where p is an odd prime. Then the even powers g2, g4, ..., gp–1 are the
quadratic residues mod p, and the odd powers g, g3, ..., gp–2 are the quadratic nonresidues mod p.

A generalization of this result is relevant to higher order reciprocity.

1.2. A Partitioning of the Natural Numbers 1, 2, 3, ..., Q–1 into N Set, Q is a Prime, N Divides Q – 1

If q is a prime and x is an natural number where q does not divide x, then xq – 1   1 (mod q) (Fermat’s “little” theorem).
Let g be a primitive root of q. The least residues modulo q of g1, g2, g3, ..., gq – 1 are in some order 1, 2, 3, ..., (q – 1). (If gi

= gj(mod q), 1 < i < q – 1, 1 < j < q – 1, j < i,then gi – j   1 (mod q), 1 < i – j < q – 1, a contradiction to the definition of a
primitive root. The least residues modulo q of g1, g2, g3, ..., gq – 1 must then be a permutation of 1, 2, 3, ..., q – 1). Denote
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(q – 1)/n by r. Let T
i
, i = 1, 2, 3, ..., n denote the least residues modulo q of gi, gi + n, gi + 2n, ..., gi + (r – 1)n. This is the partitioning

of the natural number 1, 2, 3, ..., q – 1 into n sets that will be discussed in this paper. Let s
i
 denote the number of

consecutive integers in T
i
 (after sorting). For example, 2 is a primitive root of 13, so for q = 13, n = 3, and g = 2, T

1
 = {2,

3, 11, 10}, T
2
 = {4, 6, 9, 7}, T

3
 = {8, 12, 5, 1}, s

1
 = 2, s

2
 = 1, and s

3
 = 0 (If, for example, x, x + 1, and x + 2 are elements of a set,

then the number of consecutive integers in this sequence is considered to be 2. Similar counting of consecutive
integers in a set applies for longer sequences). A prime greater than 2 has more than one primitive root, but using a
different primitive root makes no essential difference; the indices of the sets are just permuted. If g

1
 is another primitive

root of q, then g
1   gh (mod q) where h and q – 1 are relatively prime. The least residues modulo q of gi, gi + n, gi + 2n, ...,

gi + (r –1)n are in some order the least residues modulo q of  12
1 1 1 1, , , ..., j r nj j n j ng g g g     where j   k

i
 (mod n) and k and n

are relatively prime. For example, 6 is another primitive root of 13 and T
1
 = {6, 9, 7, 4}, T

2
 = {10, 2, 3, 11}, and T

3
 = {8, 12,

5, 1} in this case. The T
n
 set is always the same no matter which primitive root is used.

The least residues modulo q of gi, gi + n, gi + 2n, ..., gi + (r – 1)n are the roots of the congruence x(q – 1)/n   y(mod q), 0 < x
< q, yn   1 mod q, 0 < y < q.This is another way of interpreting the sets T

1
, T

2
, T

3
, ..., T

n
. If n = 2, the set T

1
 consists of the

quadratic non-residues mod q and the set T
2
 consists of the quadratic residues of q. If n > 2, the set T

n
 consists of

residues and the other sets consists of non-residues, but there is no advantage in lumping the non-residue sets
together.

1.3. Application of Method to Quadratic Reciprocity

For p = 113 and n = 4 the above partitioning of the natural numbers is

3 9 5 1

6 11 10 2

12 13 19 4

17 18 20 7

21 22 27 8

23 25 33 14

24 26 35 15

29 31 37 16

34 36 38 28

42 41 39 30

45 44 40 32

46 50 43 49

48 51 47 53

55 52 54 56

58 61 59 57

65 62 66 60

67 63 70 64

68 69 73 81

71 72 74 83

79 77 75 85

84 82 76 97

89 87 78 98

90 88 80 99

92 91 86 105
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96 95 93 106

101 100 94 109

107 102 103 111

110 104 108 112

s
1
 = 4, s

2
 = 6, s

3
 = 8, and s

4
 = 9. (The number of degrees of freedom is four. Primes for n = 4 usually have two or four

degrees of freedom). The pairs of consecutive integers in the first column are (23, 24), (45, 46), (67, 68), and (89, 90). The
objective is to find other differences modulo 113 where the number of pairs of integers in the first column having this
difference is also four. Pairs of integers with a difference of 2 are (21, 23), (46, 48), (65, 67), and (90, 92) and the criterion
is satisfied. Pairs of integers with a difference of 15 are (6, 21), (92, 107), (101, 3), and (110, 12) and the criterion is satisfied.
Note that in the last two pairs, the differences are modulo 113. These and other similar differences constitute the first
column in the following table. The procedure is repeated (again for integers in the first column) where the number of
pairs of integers having the specified difference is 6. These differences constitute the second column in the following
table, etc. A table of the differences is:

1 5 9 3

2 10 11 6

4 19 13 12

7 20 18 17

8 27 22 21

14 33 25 23

15 35 26 24

16 37 31 29

28 38 36 34

30 39 41 42

32 40 44 45

49 43 50 46

53 47 51 48

56 54 52 55

57 59 61 58

60 66 62 65

64 70 63 67

81 73 69 68

83 74 72 71

85 75 77 79

97 76 82 84

98 78 87 89

99 80 88 90

105 86 91 92

106 93 95 96

109 94 100 101

111 103 102 107

112 108 104 110
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The counts for column 1 are 4, the counts for column 2 are 6, the counts for column 3 are 8, and the counts for column
4 are 9. The transformation just permutes the columns. See the appendix (the Methods section) for C code that does the
transformation in the n = 4 case. The primes in columns 1 and 3 are quadratic residues modulo 113 and the primes in
columns 2 and 4 are quadratic non-residues. 113 is a quadratic residue modulo the primes in columns 1 and 3 and a non-
residue of the primes in columns 2 and 4. This is a result consistent with the quadratic reciprocity law. Note that the case
where p and q are both of the form 4k + 3 is not considered here. The differences modulo p are completely multiplicative.
This can be proved for classical quadratic reciprocity using the Chinese remainder theorem. See Chapter 5 of Mollin’s
(1998) book for an introduction to the applicability of the Chinese remainder theorem to quadratic reciprocity. The
differences modulo p are a finite commutative group having multiplication as the binary operation. A table of the
reciprocity in general is

2 11

4 13

7 22

8 26

14 31

16 41

28 44

32 52

49 61

53 62

56 77

64 82

83 88

97 91

98 104

106

109

112

The first column corresponds to the integers in the first column of the previous table and the second column
corresponds to the integers in the third column of the previous table. A group of entries in the first column is 2, 22, 23,
24, 25, and 26. Another group of entries is 7, 2 · 7, 22 · 7, 23 · 7, and 24 · 7. Another group of entries is 72 and 2 · 72. Another
group is 53 and 2 · 53. Finally, there is the group of primes 83, 97, and 109. A “basis” for the entries in the first column
could be said to be 2, 7, 53, 83, 97, and 109. A group of entries in the second column is 11, 2 · 11, 22 · 11, and 23 · 11. A
similar group is 13, 2 · 13, 22 · 13, and 23 · 13. Another group is 7 · 11 and 7 · 13. Note that 7 is a prime in the first column.
Another group is 31 and 2 · 31. Another group is 41 and 2 · 41. Note that 2 is a prime in the first column. Finally, there is
the prime 61. Considering the columns together, the basis is just the primes 2, 7, 11, 13, 31, 41, 53, 61, and 83, 97, and 109.
The first two primes are relatively small and will be designated as being “primary units”. None of the elements are
divisible by 3 or 5, so all the primes up to 11 are accounted for. Secondary and tertiary units will be defined for higher
order reciprocity.

Note that infinitely many examples of prime quadratic reciprocity can be generated from the above values using
Dirichlet’s theorem that there are infinitely many primes in an arithmetic progression. For example, in the arithmetic
progression 2 + 113k, primes occur for k = 9, 13, 15, 39, ....

A distinguishing feature of quadratic reciprocity is that the bases consist of primes. Bases in cubic reciprocity for
example, can include composite numbers. That 2 is in the basis follows from the following theorem.



Darrell Cox et al. / Int.J.Pure&App.Math.Res. 2(1) (2022) 15-39 Page 20 of 39

The Supplement to the Quadratic Reciprocity Law is

Theorem 5:   2 1 82
1

p

p

 
  

 

See Mollin’s (1999) book. Here, the Legendre symbol is denoted differently.

For p = 109 and n = 4, s
1
 = 7, s

2
 = 6, s

3
 = 7, and s

4
 = 6 (there are 2 degrees of freedom). The basis is just the primes 3,

5, 7, 29, 31, 43, 61, 71, 73, 83, 89, and 97. The method gives 4 (a square) as a solution even though 2 is not a solution. Such
solutions (and multiples of them) will be designated as being “trivial”.

For p = 101 and n = 4, s
1
 = 6, s

2
 = 6, s

3
 = 6, and s

4
 = 6 (there is 1 degree of freedom). The differences modulo p that satisfy

reciprocity are 4, 5, 13, 17, 19, 20, 23, 25, 31, 37, 43, 47, 52, 65, 68, 71, 76, 79, 85, 92, 95, 97, and 100. In this case, 4 and 25
are trivial solutions. Other trivial solutions are 22 · 5, 22 · 13, 22 · 17, 22 · 19, and 22 · 23. Disregarding these solutions, there
are only prime solutions and 5 · 13, 5 · 17, and 5 · 19. The basis is 5, 13, 17, 19, 23, 31, 37, 43, 47, 71, 79, and 97. When
(p – 1)/4 is an odd square, there is only 1 degree of freedom. See Conjectures 7 and 8. By the supplemental reciprocity

law, 2 cannot satisfy reciprocity in this case since  2 1 1
1 8

2 4

p p
p

 
   and 1

2

p  is odd.

For p = 197 and n = 4, s
1
 = 12, s

2
 = 12, s

3
 = 12, and s

4
 = 12 (there is 1 degree of freedom). The differences modulo p that

satisfy reciprocity are 4, 7, 19, 23, 28, 29, 37, 41, 43, 47, 49, 53, 59, 61, 76, 83, 92, 97, 101, 107, 109, 116, 127, 133, 137, 148, 157,
173, 181, 188, 191, 193, and 196. The only differences that are not prime are 22, 22 · 7, 22 · 19, 22 · 23, 22 · 29, 22 · 37, 22 · 41,
22 · 43, 22 · 47, and 22 · 72. Disregarding the trivial solutions, there are only prime solutions.

1.4. Application of Method to Rational Cubic Reciprocity

For p = 157 and n = 6 the above-mentioned partitioning of the natural numbers is

5 9 2 3 15 1

6 13 7 10 18 4

20 25 8 11 26 14

21 30 23 12 43 16

22 31 28 17 50 27

24 33 29 19 53 39

34 36 32 35 55 46

38 37 41 40 60 49

61 47 45 42 62 56

69 51 54 44 63 58

70 52 59 48 66 64

73 57 65 68 72 67

77 71 78 76 74 75

80 86 79 81 83 82

84 100 92 89 85 90

87 105 98 109 91 93

88 106 103 113 94 99

96 110 112 115 95 101

119 120 116 117 97 108

123 121 125 122 102 111
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133 124 128 138 104 118

135 126 129 140 107 170

136 127 134 145 114 141

137 132 149 146 131 143

151 144 150 147 139 153

152 148 155 154 142 156

s
1
 = 8, s

2
 = 6, s

3
 = 5, s

4
 = 4, s

5
 = 2, and s

6
 = 0 (there are six degrees of freedom). A table of the differences modulo 157

(obtained from the first column above) is

1 15 3 2 9 5

4 18 10 7 13 6

14 26 11 8 25 20

16 43 12 23 30 21

27 50 17 28 31 22

39 53 19 29 33 24

46 55 35 32 36 34

49 60 40 41 37 38

56 62 42 45 47 61

58 63 44 54 51 69

64 66 48 59 52 70

67 72 68 65 57 73

75 74 76 78 71 77

82 83 81 79 86 80

90 85 89 92 100 84

93 91 109 98 105 87

99 94 113 103 106 88

101 95 115 112 110 96

108 97 117 116 20 119

111 102 122 125 121 123

118 104 138 128 124 133

130 107 140 129 126 135

141 114 145 134 127 136

143 131 146 149 132 137

153 139 147 150 144 151

156 142 154 155 148 152

Differences having a count of 8 are in the first column, differences having a count of 6 are in the second column,
differences having a count of 5 are in the third column, etc. These differences are cubic residues modulo 157 (in the first
and fourth columns) and cubic non-residues in the remaining columns. The transformation just permutes the columns.
The differences modulo p for which reciprocity occur are
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4 2

16 8

39 23

46 29

58 32

64 41

75 59

82 65

93 78

101 79

118 92

130 116

141 125

143 128

156 149

150

155

The first column corresponds to the integers in the first column of the previous table and the second column
corresponds to the integers in the fourth column of the previous table. The units are 2, 3, 5, and 11. The only primary unit
is 2. The secondary units are 3, 5, and 11. Two groups of primes are involved (disregarding the units and products
consisting solely of units). The first group is 13, 31, and 47. Reciprocity occurs for 3 · 13, 3 · 31, and 3 · 47. Reciprocity
also occurs for 5 · 13, 5 · 31 and 11 · 13. This is the rationale for saying that 3, 5, and 11 are secondary units. Reciprocity
also occurs for the product 3 · 52 so that this is also considered to be a secondary unit. The second group of primes is
23, 29, 41, 59, 79, 101, and 149. Reciprocity occurs for these primes. The smallest of these primes is 23. None of the
elements are divisible by 7 or 19 (primes of the form 6k + 1), so all the primes up to 23 are accounted for.

There are usually three groups of primes (and no more) for which rational cubic reciprocity occurs. For small p-
values, there may be only one or two groups of primes. Note that for p = 157, s

2
, s

3
, and s

4
 are in arithmetic progression.

Let r denote (p – 1)/n. In this instance, r is even and 22r   1(mod p). Similar p-values (among many others) are 2017, 2281,
2341, and 3889.

For p = 2017, s
1
 = 66, s

2
 = 58, s

3
 = 54, s

4
 = 50, s

5
 = 42, and s

6
 = 65. The units are 2, 3, 5, 7, and 11. The only primary unit

is 2. The only tertiary unit is 11. Reciprocity of the secondary units occurs for 3 · 52, 32 · 5, 5 · 72, 52 · 7, 3 · 72, and 32 · 7.
The pairs 3 · 52 and 32 · 5, 5 · 72 and 52 · 7, and 3 · 72 and 32 · 7 are said to be inverses since reciprocity occurs for their
respective products. One group of primes is 11, 23, 71, 73, 149, 163, 179, 251, 347, 419, 449, 467, 587, and 653. Reciprocity
occurs for the respective products of these primes with 3, 5, and 7. Another group of primes is 47, 53, 59, 97, 199, 233, 293,
317, 353, 397, 431, 491, 509, 521, 599, and 613. Reciprocity occurs for the respective products of these primes with 3, 5,
and 7. Another group of primes is 41, 43, 83, 107, 109, 113, 167, and 173. Reciprocity occurs for the respective products
of these primes with 11. However, these products are not independent of the previous products since for example,
reciprocity occurs for 3 · 5 · 112 so that 11 · 41 is the inverse of 3 · 5 · 112. The remaining group of primes is 17, 29, 31, 131,
137, 191, 229, 383, 563, 617, 677, 727, 971, 977, 1009, 1039, 1193, 1277, 1373, 1427, 1439, 1487, 1493, 1553, 1559, 1637, 1667,
1729, 1802, 1811, 1889, 1901, 89, 101, 181, 193, 227, 239, 257, 311, 337, 401, 443, 479, 557, 569, 577, 593, 619, 659, 701, 773,
787, 823, 863, 929, 953, 1031, 1061, 1097, 1109, 1289, 1307, 1381, 1499, 1613, 1787, 1789, 1907, and 1949. Reciprocity occurs
for these primes. Note that 17 is the first of these primes. Reciprocity does not occur for 13 (a prime of the form 6k + 1)
or any product containing 13. The tertiary unit of 11 is defined so that all the primes up 17 are taken into account (at the
expense of some redundancy in coverage).
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For p = 3889, s
1
 = 90, s

2
 = 102, s

3
 = 108, s

4
 = 114, s

5
 = 126, and s

6
 = 107. The units are 2, 3, 5, 11, 17, 23, 29, 41, 47, 53, and

67. The only primary units are 2, 3, 23, 41, and 47. The only tertiary units are 53 and 67. Reciprocity of the secondary units
occurs for 5 · 11, 11 · 17, 52 · 17, 5 · 172, and 112 · 29. The first group of primes is 29, 53, 59, 79, 101, 113, 131, 179, 191, 229,
233, 241, 281, 317, 359, 389, 419, 421, 449, 479, 483, 521, 541, 557, 607, 647, 653, 701, and 773. Reciprocity occurs for the
respective products of these primes with 5 and 17. The second group of primes is 67, 89, 149, 173, 193, 239, 251, 263, 269,
293, 307, 311, 313, 347, and 353. Reciprocity occurs for the respective products of these primes with 11 and 29. Another
group of primes consists of the sole element 67. Reciprocity occurs for the product of this prime with 53. However,
reciprocity occurs for 5 · 53 and 11 · 67 so that this product is not independent. The remaining group of primes is 71, 83,
107, 137, 163, 167, 197, 223, 227, 257, 401, 433, 491, 577, 593, 599, 617, 719, 751, 839, 859, 881, 919, 941, 1013, 1019, 1097,
1103, 1151, 1171, 1187, 1193, 1217, 1223, 1279, 1307, 1321, 1409, 1439, 1481, 1493, 1559, 1571, 1609, 1697, 1733, 1783, 1787,
1823, 1889, 1931, 1949, 1979, 1997, 2003, 2027, 2069, 2087, 2099, 2111, 2129, 2161, 2309, 2393, 2417, 2441, 2459, 2579, 2687,
2693, 2729, 2749, 2753, 2843, 2861, 2879, 2887, 2903, 2927, 2953, 3023, 3061, 3067, 3137, 3121, 3187, 3191, 3221, 3137, 3187,
3191, 3203, 3221, 3271, 3299, 3319, 3323, 3329, 3359, 3389, 3413, 3449, 3457, 3461, 3469, 3527, 3557, 3593, 3643, 3671, 3673,
3701, 3727, 3733, 3761, 3779, 3793, 3797, 3863, and 3881. Reciprocity occurs for these primes. The smallest of these primes
is 71. Reciprocity does not occur for 7, 13, 19, 31, 37, 43, or 61 (all of the form 6k + 1) or any product containing these
primes. The tertiary units of 53 and 67 are defined so that all the primes up to 71 are taken into account.

There are three possibilities for n = 6. Either r is even and 22r   1(mod p), r is even and 22r   1(mod p), or r is odd.

See Conjectures 10 and 11. The case where r is even and 22r   1(mod p) will now be considered. There are only four

degrees of freedom for this case.

When p = 2857 and n = 6, s
1
 = 74, s

2
 = 91, s

3
 = 74, s

4
 = 74, s

5
 = 72, and s

6
 = 90 (there are four degrees of freedom). The

units are 2, 3, 5, 7, 11, and 17. There are no primary or tertiary units. Reciprocity of the secondary units occurs for 2·3,
2 · 7, 2 · 17, 3 · 5, 3 · 11, 5 · 7, 5 · 17, 7 · 11, 11 · 17, 2 · 52, 2 · 112, 3 · 72, 3 · 172, 5 · 112, and 7 · 172. The first group of primes
is 23, 59, 73, 89, 103, 107, 137, 149, 197, 211, 229, 263, 281, 347, 349, 389, 467, 479, 491, 509, 631, 647, 769, 797, 809, 827, 929,
947, 953, 977, 983, 997, 1009, 1013, 1031, 1151, 1163, 1181, 1187, 1193, 1321, and 1409. Reciprocity occurs for the respective
products of these primes with 2, 5, and 11. The second group of primes is 29, 47, 71, 127, 163, 173, 179, 227, 269, 283, 311,
317, 401, 409, 431, 439, 443, 449, 503, 521, 563, 593, 599, 619, 641, 659, 661, 683, 701, 719, 743, 761, 811, 821, 853, 857, 859,
881, 887, and 941. Reciprocity occurs for the respective products of these primes with 3, 22, 7, and 17. The remaining
group of primes is 19, 37, 41, 53, 67, 83, 101, 109, 113, 131, 139, 167, 191, 233, 239, 251, 257, 293, 313, 353, 359, 383, 419, 461,
557, 569, 587, 617, 653, 677, 739, 773, 839, 863, 911, 971, 1019, 1061, 1063, 1103, 1129, 1223, 1229, 1283, 1289, 1307, 1319,
1361, 1433, 1439, 1453, 1493, 1511, 1583, 1613, 1667, 1811, 1823, 1907, 1913, 1949, 2063, 2129, 2137, 2141, 2203, 2213, 2237,
2339, 2341, 2387, 2381, 2399, 2423, 2441, 2473, 2477, 2591, 2593, 2609, 2647, 2659, 2663, 2711, 2741, 2837, and 2843.
Reciprocity occurs for these primes. The smallest of these primes is 19. Reciprocity does not occur for 13 or any product
containing 13 so all primes up to 19 are taken into account.

The case where r is odd will now be considered.

For p = 1423 and n = 6, s
1
 = 37, s

2
 = 44, s

3
 = 37, s

4
 = 37, s

5
 = 44, and s

6
 = 37 (there are two degrees of freedom). The units

are 2, 3, 5, 11, and 17. The only primary units are 2 and 5. There are no tertiary units. Reciprocity of the secondary units
occurs for 3 · 112, 3 · 17, and 11 · 17. The first group of primes is 59, 83, 101, 139, 149, 179, 193, 227, 233, 241, 277, 281, 311,
359, 367, 379, 383, 389, 409, and 461. Reciprocity occurs for the respective products of these primes with 3 and 11. The
second group of primes is 41, 43, 47, 71, 79, 107, 113, 131, and 151. Reciprocity occurs for the respective products of
these primes with 32 and 17. Reciprocity also occurs for the primes 23, 29, 53, 61, 89, 137, 173, 181, 239, 263, 269, 283, 347,
349, 401, 443, 467, 503, 557, 569, 587, 617, 619, 683, 761, 89, 839, 857, 863, 877, 883, 911, 1031, 1049, 1061, 1103, 1193, 1223,
1277, 1283, 1301, 1307, 1321, 1367, 1373, and 1409. The smallest of these primes is 23. Reciprocity does not occur for 7,
13, or 19 or any products containing these primes so all primes up to 23 are taken into account.

1.5. Application of Method to Rational Quintic Reciprocity

For p = 751 and n = 10, s
1
 = 5, s

2
 = 7, s

3
 = 11, s

4
 = 6, s

5
 = 8, s

6
 = 5, s

7
 = 7, s

8
 = 11, s

9
 = 6, and s

10
 = 8 (there are 5 degrees of

freedom). In the differences modulo p (as computed above) there are five columns. The integers in the first column are
quintic residues modulo 751 and the integers in the other columns are quintic non-residues modulo 751. The primes for
which 751 is not a quintic residue are of the form 10k + 1. The basis of the differences modulo p for which reciprocity
occur involves five group of primes. The units are 2, 3, 5, 7, 13, 19, 23, 29, 37, and 43. There are no primary units. The
tertiary units are 23, 29, 37, and 43. Reciprocity of the secondary units occurs for 2 · 17, 22 · 13, 22 · 19, 23 · 13, 23 · 72,
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24 · 3, 24 · 5, 24 · 7, 3 · 17, 32 · 13, 32 · 19, 33 · 52, 34 · 7, 5 · 17, 52 · 13, 52 · 19, 7 · 17, and 72 · 13. Reciprocity of the tertiary units
occurs for 23 · 23, 23 · 29, 23 · 37, and 2 · 43. The first group of primes is 43, 97, 157, 173, 233, 239, 277, 317, and 349.
Reciprocity occurs for the respective products of these primes with 2, 3, 5, and 7. The second group of primes is 113, 127,
139, and 167. Reciprocity occurs for the respective products of these primes with 22. The third group of primes is 23, 29,
37, 67, and 79. Reciprocity occurs for the respective products of these primes with 23, 22 · 3, 13, and 19. The fourth group
of primes consists of the sole element 71. Reciprocity occurs for the products 22 · 71 and 32 · 71. Reciprocity also occurs
for the primes 53, 73, 83, 107, 163, 179, 193, 197, 223, 229, 251, 307, 331, 337, 359, 373, 379, 467, 499, 503, 557, 569, 643, 673,
and 719. The smallest of these primes is 53. Reciprocity does not occur for 11, 31, 41, or 61 (all primes of the form
10 · k + 1) or any product containing these primes. The tertiary units account for all the primes less than 53 except for 47.

When p = 1471, the s
i
 values equal 15 or 14 (two degrees of freedom). The units are 2, 3, 5, 7, 13, 17, 19, 23, 29, 37, 43,

47, 53, 59, 71, and 73. The primary unit is 3. The secondary units are 2, 3, 5, 7, 13, 17, 19, 23, 29, and 37. The tertiary units
are 43, 47, 53, 59, 71, and 73. Reciprocity of the secondary units occurs for 2 · 5 · 13, 2 · 7 · 13, 2 · 7 · 29, 2 · 19, 2 · 23, 2 ·
37, 22 · 5, 22 · 7, 23 · 17, 23 · 5 · 19, 23 · 5 · 23, 23 · 13 · 17, 23 · 7 · 19, 23 · 7 · 23, 23 · 132, 23 · 192, 24 · 13, 24 · 29, 5 · 17, 5 · 7 · 19,
5 · 7 · 23, 5 · 7 · 37, 5 · 132, 7 · 17, 7 · 132, 72 · 19, 72 · 23, 13 · 19, 13 · 23, 13 · 37, and 23 · 29. Reciprocity of the tertiary units
occurs for 24 · 47, 24 · 53, 24 · 59, 24 · 73, 22 · 43, 22 · 71, and 2 · 17 · 43. The first group of primes is 67, 83, 173, 179, 193, 197,
239, 283, 293, 307, and 367. Reciprocity occurs for the respective products of these primes with 22. The second group of
primes is 43, 71, 89, 103, 157, and 163. Reciprocity occurs for the respective products of these primes with 23, 5, and 7.
The third group of primes is 127, 199, 227, 313, 337, 349, 353, 359, 397, 433, 457, 557, 617, 619, and 631. Reciprocity occurs
for the respective products of these primes with 2. The fourth group of primes is 47, 53, 59, 73, 97, 107, 137, and 139.
Reciprocity occurs for the respective products of these primes with 19, 2 · 5, and 2 · 7. Reciprocity occurs for the primes
79, 101, 109, 113, 149, 167, 229, 233, 263, 277, 401, 439, 449, 503, 587, 607, 647, 677, 683, 709, 719, 773, 797, 809, 947, 1009,
1063, 1129, 1217, 1249, 1289, 1433, and 1439. The smallest of these primes is 79. Reciprocity does not occur for 11, 31, 41,
or 61 or any products containing these primes. The tertiary units account for all the primes less than 79.

See Conjectures 17, 18, 19, and 20 for properties of the s
i
 values when n = 10.

1.6. Application of Method to Rational Septumic Reciprocity

When p = 1051, and n = 14, s
1
 = 6, s

2
 = 3, s

3
 = 4, s

4
 = 9, s

5
 = 5, s

6
 = 8, and s

7
 = 2. The units are 2, 3, 5, 77, 11, 13, 17, 19, 23,

31, 37, 41, 47, 53, 59, 61, and 67. There are no primary units. The tertiary units are 23, 31, 37, 41, 47, 53, 59, 61, and 67.
Reciprocity of the secondary units occurs for 2 · 7, 3 · 7, 3 · 52, 33 · 11, 33 · 13, 34 · 5, 33 · 17, 2 · 52, 24 · 5, 23 · 11, 23 · 13, 23

· 17, 26 · 3, 25 · 32, 24 · 33, 23 · 34, 22 · 35, 5 · 11, 5 · 13, 5 · 17, 23 · 3 · 5, 22 · 3 · 11, 22 · 3 · 11, 22 · 3 · 13, 22 · 32· 5, 2 · 32 · 11, 22

· 3 · 17, 2 · 32 · 13, 2 · 33 · 5, 2 · 32 · 17, 22 · 5 · 19, 2 · 11 · 19, 2 · 13 · 19, 2 · 3 · 5 · 19, 3 · 11 · 19, 2 · 17 · 19, 22 · 52 · 7, 3 · 13
· 19, 2 · 5 · 7 · 11, 32 · 5 · 19, 2 · 5 · 7 · 13, 24 · 3 · 19, 3 · 17 · 19, 7 · 11 · 13, and 2 · 3 · 52 · 7. Reciprocity of the tertiary units
occurs for 2 · 23, 2 · 41, 2 · 47, 3 · 5 · 31, 3 · 5 · 37, 3 · 5 · 61, 3 · 5 · 67, 7 · 59, and 23 · 53. Seven groups of primes are involved
in the reciprocity of the differences modulo p. The first group of primes is 23, 41, 47, 157, 199, 227, 293, and 367.
Reciprocity occurs for the respective products of these primes with 2 and 3. The second group of primes is 53, 83, 149,
and 179. Reciprocity occurs for the respective products of these primes with 5, 23, 33, 22 · 3, and 2 · 32. The third group
of primes is 31, 37, 61, 67, 71, and 103. Reciprocity occurs for the respective products of these primes with 11, 13, 17, 24,
2 · 5, 3 · 5, and 23 · 3. The fourth group of primes is 59, 89, and 109. Reciprocity occurs for the products of these primes
with 7. The fifth group consists of the sole element 107. Reciprocity occurs for the products of this prime with 22, 32, and
2 · 3. The sixth group consists of the sole element 131. Reciprocity occurs for the products of this prime with 22 and
2 · 3. The final group is the primes 79, 97, 139, 163, 181, 307, 317, 409, 443, 557, 619, 653, 797, 859, 919, 914, and 971.
Reciprocity occurs for these primes. The smallest element of this group is 79. No reciprocity occurs for 29 or 43 or any
products containing these primes. The tertiary units account for all the primes less than 79 except 73.

See Conjecture 21 for properties of the s
i
 values when n = 14.

1.7. Application of Method to Rational Biquadratic Reciprocity

Tertiary units are not applicable to biquadratic reciprocity. For p = 1153 and n = 8, s
1
 = 14, s

2
 = 22, s

3
 = 12, s

4
 = 17, s

5
 = 26,

s
6
 = 20, s

7
 = 24, and s

8
 = 8 (there are eight degrees of freedom). The units are 2, 3, 11, and 13. The only primary unit is 2.

Reciprocity of the secondary units occurs for 32, 3 · 11, 3 · 13, 11 · 13, 112, and 132. The first group of primes is 43, 89, 109,
131, 139, 223, 271, 281, 313, 349, 379, and 383. Reciprocity occurs for the respective products of these primes with 3, 11,
and 13. Reciprocity occurs for the second group of primes 23, 47, 67, 199, 239, 307, 419, 443, 499, 503, 523, 619, 859, 911,
941, 983, 997, 1013, 1061, and 1087. Note that there are two groups of primes other than the units.
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For p = 1801 and n = 8, the si values equal 27 or 29. The units are 2, 3, 5, 7, and 17. The primary units are 2, 3, and 7.
Reciprocity of the secondary units occurs for 52, 172, and 5 · 17. The first group of primes is 43, 101, 103, 107, 199, 223,
227, 263, 283, 331, and 359. Reciprocity occurs for the respective products of these primes with 5 and 17. Reciprocity
occurs for the second group of primes 67, 113, 193, 197, 211, 233, 239, 257, 271, 367, 401, 467, 487, 503, 563, 599, 601, 643,
751, 773, 837, 863, 887, 911, 919, 937, 997, 1123, 1153, 1163, 1201, 1223, 1259, 1283, 1289, 1291, 1297, 1307, 1399, 1423, 1451,
1549, 1579, 1601, 1657, 1667, 1693, 1747, 1759, 1783, 1787, and 1789.

For p = 2393, the s
i
 values equal 39, 35, or 36. The units are 2, 13, 17, and 23. The only primary unit is 2. Reciprocity

of the secondary units occurs for 132, 172, 232, 13 · 17, 13 · 23, and 17 · 23. The first group of primes is 71, 127, 131, 137,
151, and 179. Reciprocity occurs for the respective products of these primes with 13, 17, and 23. Reciprocity occurs for
the second group of primes 73, 79, 83, 107, 139, 163, 199, 233 239, 263, 271, 283, 311, 331, 367, 369, 431, 439, 521, 547, 569,
593, 607, 619, 647, 673, 691, 727, 811, 877, 887, 919, 1009, 1031, 1049, 1061, 1093, 1097, 1153, 1213, 1283, 1307, 1373, 1481,
1511, 1531, 1543, 1597, 1613, 1721, 1831, 1867, 1877, 1901, 1951, 1979, 2003, 2039, 2083, 2087, 2113, 2129, 2137, 2179, 2203,
2207, 2351, and 2377.

Reciprocity of the secondary units occurs for squares of primes and products of pairs of these primes. When n = 8,
there are two degrees of freedom when (p – 1)/8 is an odd square and 2(p – 1)/4   1(mod p). See Conjectures 12 and 13. In
addition to p = 1801, these conditions are satisfied for p = 3529 and p = 8713 (for p less than 10000).

1.8. Elementary Properties of the Number of Consecutive Elements in a Set

Theorems concerning s
1
, s

2
, s

3
, ..., s

n
 will now be proved. The proofs are not difficult, but some are fairly lengthy and

details will be omitted.

Theorem 6: s
1
 + s

2
 + s

3
 + ... + s

n
 = r – 1.

Proof: The congruence  
1 1

1
p p
n nx x
 

 
, 0 < x < p – 1, has exactly 1

1
p

n


  roots.

Theorem 7: If r is odd and n is even, s
i
 = s

i + n/2
, i = 1, 2, 3, ..., (n/2).

Proof: If yn   1(mod p) and n is even (p – y)n = 1(mod p).

Theorem 8: If n = 2 and r is even, s
1
 = s

2
 + 1.

Proof: Let q be an odd natural number and suppose the integers 1, 2, 3, ..., (q – 1) are sorted at random into two sets A
and B of (q – 1)/2 elements each. Let 

1
 be the number of pairs of consecutive integer in A and 

2
 the number of pairs on

consecutive integers in B. Let 
1
, 

2
, ..., 

(q – 1)/2
 be the elements of A arranged in ascending order and let x

2i – 1
 and x

2i
,

i = 1, 2, 3, ..., k be the first and last integers of the groups of consecutive integers in 
1
, 

2
, ..., 

(q – 1)/2
. Count an element

of 
1
, 

2
, ..., 

(q – 1)/2
 not consecutive to its adjacent elements as being a group of one consecutive integer. For example, if

q = 13 and 
1
, 

2
, ..., 

6
 equal 1, 3, 4, 9, 10, 12 respectively, then x

1
 = x

2
 = 1, x

3
 = 3, x

4
 = 4, x

5
 = 9, x

6
 = 10, and x

7
 = x

8
 = 12. There

are x
2i
 – x

2i – 1
 pairs of consecutive integers in the group having x

2i – 1
 and x

2i
 as its first and last integers, therefore

 2 2 1 11

k

i ix x   . Also, since x
2i
 – x

2i – 1
 + 1 is the number of elements in the group having x

2i – 1
 and x

2i
 as its first and

last integers,  2 2 11

1
1

2

k

i ii

q
x x 


   . Therefore 1

1

2

q
k 

  .

Case (1): 1 is in A and q – 1 is in A:

 1

2 1 2 21
2

k

i ii
x x 


    therefore    2 2 1 1 2 21

2 1
k

i i ki
x x x x k 

       .

Then     2

1
1 1 2 1

2

q
k q k          

 
, 2

1
1

2

q
k     

 
, and 

1
 + 1 = 

2
.

Case (2): 1 is in B and q – 1 is in B:

The logic is the same as for Case (1), so 
2
 + 1 = 

1
.

Case (3): 1 is in A, (q – 1) is in B:

   2 1 2 2 21
2 1 1

k

i i ki
x x q x 

         ,

therefore      2 2 1 1 2 2 21
2 1 1 1

k

i i k ki
x x x x k q x 

           .
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Then     2

1
1 2 1 1 1

2

q
k k q           

 
, and 

1
 = 

2
.

Case (4): 1 is in B, (q – 1) is in A:

The logic is the same as for Case (3), so 
2
 = 

1
.

If (p – 1)/2 is even, 1 and p – 1 are roots of x(p – 1)/2   1(mod p), therefore s
2
 + 1 = s

1
. If (p – 1)/2 is odd, p – 1 is not a

root of x(p – 1)/2   1(mod p), therefore s
2
 = s

1
.

Theorem 9: If 6 does not divide r and 2r   1(mod q), then 6 divides s
n
. If 6 divides r and 2r   1(mod q), then s

n
   2 (mod

6). If 6 does not divide r and 2r   1(mod q), then s
n
   3 (mod 6). If 6 divides r and 2r   1(mod q), then s

n
   5 (mod 6).

The following is a brief explanation of this theorem. Let x–1 denote an integer such the xx–1   1(mod q). Let C(x)
denote the least residues modulo q of x, 1 – x, (1 – x)–1, –x(x – 1)–1, –x–1(1 – x), and x–1 (the formal values of the cross-ratio
function). If one element of C(x) is a root of x(q – 1)/n   1(mod q), then every element of C(x) is a root and is one larger than
another root. The elements of C(x) are distinct unless 2 is an element of C(x) (in which case the distinct elements are 2,
(q + 1)/2, and q – 1) or a root of x2 – x + 1   0(mod q), 0 < x < q is an element of C(x) (in which case the distinct elements
are the two root of x2 – x + 1   0(mod q), 0 < x < q). x2 – x + 1   0(mod q) has a root if and only if 6 divides q – 1.

1.9. Non-Elementary Properties of the Number of Consecutive Elements in a Set

There are an abundance of non-elementary properties of s
1
, s

2
, s

3
, ..., s

n
. Some empirical results for n < 16 and q < 40000

are

Conjecture 1: If n = 3, r is a square, and 2r   1(mod q), then s
1
 – s

2
 = s

2
 – s

3
 (or s

2
 – s

1
 = s

1
 – s

3
 for some other primitive

root of q).

Conjecture 2: If n = 3, then s
1
 – s

2
 = s

2
 – s

3
 (or s

2
 – s

1
 = s

1
 – s

3
) only if r is a square.

Conjecture 3: If n = 3, r is a square, and 2r   1(mod q), then s
1
 – s

2
 + 2 = s

1
 – s

3
.

Conjecture 4: If n = 3, then s
1
 – s

2
 + 2 = s

1
 – s

3
 only if r is a square.

Conjecture 5: If n = 3, then s
1
 = s

3
 (or s

2
 = s

3
) only if n/2 is odd.

Conjecture 6: If n = 3, then s
1
   s

2
.

Conjecture 7: If n = 4 and r is an odd square, then s
1
 = s

2
 = s

3
 = s

4
.

Conjecture 8: If n = 4, then s
1
 = s

2
 = s

3
 = s

4
 only if r is an odd square.

Conjecture 9: If n = 4 and r is even, then s
1
 – s

2
 = s

2
 – s

3
.

Conjecture 10: If n = 6, r is even, and 22r   1(mod q), then s
1
 = s

3
 = s

4
 (or s

2
 = s

3
 = s

5
 for some other primitive root of q).

Conjecture 11: If n = 6, r is even, and 22r   1(mod q), then s
2
 – s

3
 = s

3
 – s

4
 and s

1
 – s

2
 = s

4
 – s

5
 = 2(s

2
 – s

3
) (or s

2
 – s

3
 = s

3

– s
4
 and s

1
 – s

2
 = s

4
 – s

5
 = 2(s

3
 – s

4
) for some other primitive root of q).

Conjecture 12: If n = 8, r is an odd square, and 22r   1(mod q), then s
1
 = s

3
 = s

5
 = s

7
 and s

2
 = s

4
 = s

6
 = s

8
.

Conjecture 13: If n = 8, then s
1
 = s

3
 = s

5
 = s

7
 and s

2
 = s

4
 = s

6
 = s

8
 only if r is an odd square.

Conjecture 14: If n = 8, r is odd, and 22r   1(mod q), then s
1
 = s

3
 and s

5
 = s

7
.

Conjecture 15: If n = 8, r is even, and 22r   1(mod q), then s
1
 = s

3
 = s

5
 = s

7
.

Conjecture 16: If n = 8, r is even, and 22r   1(mod q), then s
1
 – s

3
 = s

5
 – s

7
.

Conjecture 17: If n = 10, r is even, and 22r   1(mod q), then s
1
 = s

6
 = s

7
 and s

3
 = s

5
 = s

8
 (for some primitive root of q).

Conjecture 18: If n = 10, r is even, and 22r   1(mod q), then s
1
 – s

2
 = s

8
 – s

9
, s

3
 – s

4
 = s

6
 – s

7
, and s

2
 – s

3
 – s

7
 + s

8
 = –2(s

4
 –

s
5
 – s

5
 + s

6
).

Conjecture 19: If n = 10, r is odd, and 22r   1(mod q), then s
1
 – s

2
 = s

3
 – s

4
 and s

6
 – s

7
 = s

8
 – s

9
 (for some primitive root

of q).
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Conjecture 20: If n = 10, r is odd, and 22r   1(mod q), then s
1
 – s

4
 = s

4
 – s

2
 and s

6
 – s

9
 = s

9
 – s

7
 (for some primitive

root of q).

Conjecture 21: If n = 14, r is odd, and 22r   1(mod q), then s
1
 = s

8
 and s

5
 = s

12
 (for some primitive root of q).

That the condition 2r = 1(mod q) (or 2r   1(mod q)) has an effect on the s
i
 values is to be expected from Theorem 9.

There does not appear to be any simple explanation for r being a square having an effect on the s
i
 values (when n equal

3, 4, or 8). When n = 2, there is a definite connection between the s
i
 values and quadratic reciprocity and this connection

is provided by Perron’s theorem.

1.10 Perron’s Theorem

Theorem 8.4 in Vermani’s (1996) book is

Theorem 10: If p = 4k + 1, then 2 = p.

Theorem 8.5 is

Theorem 11: If p = 4k – 1, then 2 = –p.

Here, the Gaussian sum is defined by  1

1

p i

i
i  


 where  i  is the Legendre symbol and  is a primitive pth

root of unity in some extension of the field GF(s). s is another prime which is a quadratic residue mod p. A finite field is

called a Galois field and if F is a field of order pn, we write F = GF(pn).  i  = 0 if i is a multiple of p, 1 if i is q quadratic

residue mod p, or –1 if i is a non-residue mod p. Vermani uses Perron’s theorem to prove these theorems.

Perron’s theorem is

Theorem 12: (1) Suppose p = 4k –1. Let r
1
, r

2
, r

3
, ..., r

2k
 be the 2k quadratic residues modulo p together with 0, and let a

be a number relatively prime of p. Then among the 2k numbers r
i
 + a, there are k residues (possibly including 0) and k

non-residues. (2) Suppose p = 4k – 1. Let n
1
, n

2
, n

3
, ..., n

2k – 1
 be the 2k – 1 non-residues. Then among the 2k – 1 numbers

n
i
 + a, there are k residues (possibly including 0) and k – 1 non-residues. (3) Suppose p = 4k + 1. Among the 2k + 1

numbers r
i
 + a are, if a is itself a residue, k + 1 residues (including 0) and k non-residues; and, if a is a non-residue, k

residues (not including 0) and k + 1 non-residues. (4) Suppose p = 4k + 1. Among the 2k numbers n
i
 + a are, if a is itself

a residue, k residues (not including 0) and k non-residues; and, if a is a non-residue, k + 1 residues (including 0) and k
– 1 non-residues.

Vermani does not include the proof of this theorem (or include it in his bibliography). Theorem 8 can be used to
prove the theorem for the case a = 1. From there, the theorem can be proved for general a values.

1.11. An Algorithm for Computing Generalized Gauss Sums

See the appendix for C code for computing quadratic and cubic Gauss sums. Other than the arithmetic in the different
fields and the number of iterations, the algorithm is essentially the same for quadratic and all higher order Gauss sums.
For p = 11 and quadratic Gauss sums, the output is 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, –10. The normalized (divided by p) Gauss sum
is taken to be 1. For p = 13 and quadratic Gauss sums, the output is –1, –1, –1, –1, –1, –1, –1, –1, –1, –1, –1, –1, 12. The
normalized Gauss sum is taken to be –1. For p = 13 and cubic Gauss sums, the output after the first iteration is (3, –1),
(–4, –3), (–4, –3), (1, 4), (3, –1), (1, 4), (1, 4), (3, –1), (1, 4), (–4, –3), (–4, –3), (3, –1), (0, 0). The output after the second and
final iteration is (4, 3), (4, 3), (4, 3), (4, 3), (4, 3), (4, 3), (4, 3), (4, 3), (4, 3), (4, 3), (4, 3), (4, 3), (–48, –36). The normalized cubic
Gauss sum is taken to be (4, 3). Note that (13 – 1)/3 is a square (of 2) so that Conjecture 1 is applicable. Denote the square
roots of these values by s. In this case, (2s, s + 1) = (4, 3). For p = 13, 193, 769, 1201, 1453, 2029, 3469, 3889, 4801, and 10093,
(p – 1)/3 is a square. The following conjecture is based on this data.

Conjecture 22: If n = 3 and (p – 1)/n is square, then either (2s, s + 1), (–s –1, s + 1), or (–2s, –s + 1) equals the normalized
cubic Gauss sum.

For p = 5 and biquadratic Gauss sums, the output after the third and final iteration is (3, –4), (3, –4), (3, –4), (3, –4),
(–12, 16). The normalized biquadratic Gauss sum is taken to be (3, –4). Note that (5 – 1)/4 is a square (of 1) so that
Conjecture 7 is applicable. In this case (p – 2, –4s) = (3, –4). For p = 5, 37, 101, and 197 (p – 1)/4 is an odd square. The
following conjecture is based on this data.
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Conjecture 23: If n = 4 and (p – 1)/n is an odd square, then either (p – 2, –4s) or (p – 2, 4s) equals the normalized
biquadratic Gauss sum.

1.12. Cubic Reciprocity

Let  be a primitive pth root of unity. The principal quadratic Gaussian sum is   jj p  where the summation is from

j = 1 to p – 1 and j/p denotes the Legendre symbol. The generalization of Gaussian sums for n > 2 is straight forward;
instead of multiplying powers of  by 1 or –1 (roots of x2 – 1), powers of  are multiplied by powers of a primitive nth root

of unity. For n = 3, 
     2 3 1 2 1 3ie i     is a primitive nth unity of unity. The numbers  = a + b where a and b

are rational integers are called the integers of the field k(). The norm of the integer a + b is a2 – ab + b2. An integer
whose norm is a rational prime is a prime in k(). If    ±(mod 3), then  is said to be primary. For example, for p = 13, n
= 3, and g = 2 (a primitive root of 13), the least residues modulo p of g1, g4, g7, and g10 are 2, 3, 11, and 10, and these powers
of  are multiplied by 1, the least residues modulo p of g2, g5, g8, and g11 are 4, 6, 9, and 7, and these powers of  are
multiplied by , and the least residues modulo g3, g6, g9, and g12 are 8, 12, 5, and 1, and these powers of  are multiplied
by 2. The generalized Gaussian sum is 21 + 2 + 3 + 4 + 25 + 6 + 7 + 28 + 9 + 10 + 11 + 212. The cube
of the generalized Gaussian sum is p where p is a primary prime in k() having a norm of p. Let R be the set of primes
of the form 3i + 1. For distinct primes p and q in R, q is a rational cube modulo p (this is an abbreviated way of saying
that q is congruent to the cube of an integer modulo p) if and only if p

p
 is a cube of an integer in k() modulo q. Also,

p is a rational cube modulo q if and only if q
q
 is a cube of an integer in k() modulo p. Therefore q is a cube modulo p

and p is a cube modulo q if and only if 
p
 is a cube of an integer (in k()) modulo q and 

q
 is a cube of an integer (in k())

modulo p.

See Chapter 5.1 of Mollin’s (1998) book for a rigorous treatment of cubic reciprocity.

1.13. Biquadratic Reciprocity

For n = 4, the generalized Gaussian sum would be similarly formed. The fourth power of this generalized Gaussian sum
is p2 where  is a prime in k(i) having a norm of p. See Chapter 5.2 of Mollin’s book for a rigorous treatment of
biquadratic reciprocity.

2. Results

A connection between the numbers of pairs of consecutive roots of the congruences x(p – 1)/n   y(mod p), 0 < x < p, yn

  1(mod p), 0 < y < p, and nth order reciprocity is made. An algorithm for computing generalized Gaussian sums is given.
The number of pairs of consecutive roots of the congruences are shown to be relevant to these generalized Gaussian
sums. A simplified explanation of cubic reciprocity (not necessarily rational) is given. Empirical observations are made.

3. Conclusion

When q is a nth power modulo p is determined using the primitive roots of p, but whether there is reciprocity is
determined empirically. That there are n/2 groups of primes other than the units for quadratic (n = 2) and biquadratic
(n = 4) reciprocity would be difficult to prove. Similarly, that there are n groups of primes other than units for nth order
reciprocity, n = 3, 5, 7, 11, ..., for sufficiently large p would be difficult to prove. Even rigorously defining the units would
be difficult.
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TESTX2_C.htm[3/30/2022 9:46:54 AM]

/*****************************************************************************/

/* */

/* QUADRATIC RECIPROCITY (transformation) */

/* 12/11/21 (dkc) (n=4) */

/* */

/* The input is the first group of nonresidues. The distinct s[i] values */

/* are in the "select" array. "degree" is set accordingly. */

/* */

/*****************************************************************************/

#include <stdio.h>

#include <math.h>

//#include "out2a.h" // p=193

//#include "out2b.h" // p=2917

//#include "out2c.h" // p=97

//#include "out2d.h" // p=109

//#include "out2e.h" // p=113

//#include "out2f.h" // p=1889

//#include "out2g.h" // p=997

//#include "out2h.h" // p=521

//#include "out2i.h" // p=113, column[4] selected

#include "out2j.h" // p=101

int main () {

//unsigned int size=28; // size of n, p=113

//unsigned int size=48; // size of n, p=193

//unsigned int size=729; // size of n, p=2917

//unsigned int size=24; // size of n, p=97

//unsigned int size=27; // size of n, p=109

//unsigned int size=472; // size of n, p=1889

//unsigned int size=249; // size of n, p=997

//unsigned int size=130; // size of n, p=521

unsigned int size=25; // size of n, p=101

unsigned int p=101;

unsigned int degree=1; // size of select

//unsigned int select[4]={4,6,8,9}; // p=113

//unsigned int select[3]={8,11,14}; // p=193

//unsigned int select[1]={182}; // p=2917

//unsigned int select[4]={8,7,6,2}; // p=97

//unsigned int select[2]={7,6}; // p=109

//unsigned int select[4]={130,120,110,111}; // p=1889

//unsigned int select[2]={66,58}; // p=997

//unsigned int select[3]={36,31,26}; // p=521

unsigned int select[1]={6}; // p=101

unsigned int norec=1; // if set, no reciprocity

Appendix
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unsigned int del;

unsigned int h,i,j,k,r,count,sel,q;

unsigned int f[6000],v[6000],in[6000];

unsigned int qp,t,indf,indv,index;

FILE *Outfp;

Outfp = fopen("outx2.dat","w");

index=0;

for (k=1; k<=degree; k++) {

 sel=select[k-1];

 for (h=1; h<p; h++) {

  del=h;

  count=0;

 for (i=0; i<size; i++) {

  r=(unsigned int)n[i]+del;

  if (r>=p) {

  r=r-(r/p)*p;

// printf("r=%d \n",r);

 for (j=0; j<i; j++) {

  if ((unsigned int)n[j]==r)

 count=count+1;

   }

 }

 else {

 for (j=i+1; j<size; j++) {

 if ((unsigned int)n[j]==r)

 count=count+1;

     }

   }

 }

 printf("del=%d, count=%d \n",del,count);

 if (count==sel) {

 in[index]=del;

 index=index+1;

// fprintf(Outfp," %d, \n",del);

      }

    }

 }

TESTX2_C.htm[3/30/2022 9:46:54 AM]

//

// check reciprocity

//

if (index!=(p-1)) {

 printf("error: index=%d, p=%d \n",index,p);

 return(0);
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 }

if (norec!=0) {

   for (h=0; h<(p-1); h++)

      fprintf(Outfp," %d, \n",in[h]);

 return(0);

 }

count=0;

q=p;

qp=q;

indf=1;

for (h=1; h<q; h++) {

  p=(unsigned int)in[h-1];

  for (i=1; i<q; i++) {

   t=i*i;

   t=t-(t/q)*q;

   if (t==p) {

// printf(" %d %d %d \n",q,p,i);

// fprintf(Outfp," %d %d %d \n",q,p,i);

 f[indf-1]=p;

 indf=indf+1;

 break;

     }

   }

 }

indv=1;

for (h=1; h<qp; h++) {

 p=(unsigned int)in[h-1];

 q=qp;

 if (q>p)

 q=q-(q/p)*p;

 for (i=1; i<p; i++) {

   t=i*i;

   t=t-(t/p)*p;

   if (t==q) {

// printf(" %d %d %d \n",qp,p,i);

// fprintf(Outfp," %d %d %d \n",qp,p,i);

 v[indv-1]=p;

 indv=indv+1;

 break;

    }

   }

 }

indf=indf-1;

indv=indv-1;
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//printf(" %d %d %d %d \n",indf,indv,f[indf-1],v[indv-1]);

for (h=1; h<=indf; h++) {

  p=f[h-1];

 for (i=1; i<=indv; i++) {

  if (v[i-1]==p) {

   printf(" %d \n",p);

   fprintf(Outfp," %d, \n",p);

   count=count+1;

   break;

     }

   }

 }

printf("p=%d, count=%d \n",qp,count);

fprintf(Outfp,"p=%d, count=%d \n",qp,count);

fclose(Outfp);

return(0);

}

compute square of Gaussian sum

gauss2.htm[11/16/2021 10:18:21 AM]

/*****************************************************************************/

/* */

/* COMPUTE SQUARES OF GAUSSIAN SUMS */

/* 11/14/97 (dkc) */

/* */

/* This C program computes squares of Gaussian sums. */

/* */

/*****************************************************************************/

#include "input.h"

#include <stdio.h>

int main ()

{

/**************************************************************************/

/* p is a prime, n is a divisor of p-1, and r is a primitive root of p, */

/* the cyclotomic cosets are stored in c[n][(p-1)/n] */

/**************************************************************************/

unsigned int n, p, r;

unsigned int c[2][500]; // c[n][(p-1)/n]

unsigned int sum[1002],temp[1002],save[1002];

unsigned int k[1002];

unsigned int g, h, i, j;

FILE *Outfp;

Outfp = fopen("gauss2b.dat","w");

n=2;

for (g=0; g<100; g++) {
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  p=input[2*g];

  r=input[2*g+1];

/******************************************************************/

/* generate permutation of 1,2,3...,(p-1) (by Fermat's theorem) */

/******************************************************************/

 k[0] = r;

 for (i=1; i<p-1; i++) {

    k[i] = k[i-1]*r - ((k[i-1]*r)/p)*p;

     }

 for (i=0; i<p-2; i++) {

   if (k[i] == 1) {

    fprintf(Outfp,"error: r is not a primitive root of p \n");

    goto bskip;

     }

 }

/**********************************************/

/* sort permutation into cyclotomic cosets */

/**********************************************/

 for (h=0; h<n; h++) {

   j=0;

   for (i=h; i<p-1; i+=n) {

      c[h][j] = k[i];

       j=j+1;

       }

    }

/***************************/

/* compute Gaussian sum */

/***************************/

 j=1;

 for (h=0; h<n; h++) {

     j=j*-1;

    for (i=0; i<(p-1)/n; i++) {

     temp[c[h][i]]=j;

      }

   }

 temp[0]=0;

/************************************/

/* compute square of Gaussian sum */

/************************************/

/****************************/

/* initialize sum squared */

/****************************/

   for (h=1; h<=p-1; h++) {

      sum[h+1]=temp[h]*temp[1];
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 save[h]=temp[h];

 }

 sum[1]=0;

/*******************/

/* rotate array */

/*******************/

 for (h=p; h>1; h--) temp[h]=temp[h-1];

 temp[1]=0;

/***************************/

/* compute partial sums */

/***************************/

compute square of Gaussian sum

gauss2.htm[11/16/2021 10:18:21 AM]

 for (h=1; h<=p-2; h++) {

 j=temp[p];

 for (i=p; i>1; i--) {

 temp[i]=temp[i-1];

 }

 temp[1]=j;

 for (i=1; i<=p; i++) {

 sum[i]=sum[i]+temp[i]*save[h+1];

     }

 }

/**********************************/

/* write square of Gaussian sum */

/**********************************/

 fprintf(Outfp," p=%d r=%d sum=%d \n",p,r,sum[1]);

 printf(" p=%d r=%d sum=%d \n",p,r,sum[1]);

   for (i=2; i<p; i++) {

    if (sum[i]!=sum[1]) {

 fprintf(Outfp,"error \n");

 printf("error \n");

   goto bskip;

    }

 }

 if (((sum[1]-sum[p])!=p)&&((sum[p]-sum[1])!=p)) {

 fprintf(Outfp,"error \n");

 printf("error \n");

   goto bskip;

 }

 if ((p-1)==((p-1)/4)*4) {

 if (sum[1]!=-1) {

 fprintf(Outfp,"error \n");

 printf("error \n");
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 goto bskip;

    }

 }

 else {

 if (sum[1]!=1) {

 fprintf(Outfp,"error \n");

 printf("error \n");

 goto bskip;

   }

  }

 }

bskip:

fclose(Outfp);

return(0);

}

compute cube of Gaussian sum

gauss3.htm[11/16/2021 1:27:45 PM]

/*****************************************************************************/

/* */

/* COMPUTE CUBES OF GAUSSIAN SUMS */

/* 11/14/97 (dkc) */

/* */

/* This C program computes cubes of generalized Gaussian sums. */

/* */

/*****************************************************************************/

#include "input.h"

#include <stdio.h>

int main ()

{

/**************************************************************************/

/* p is a prime, n is a divisor of p-1, and r is a primitive root of p */

/* the cyclotomic cosets are stored in c[n][(p-1)/n] */

/**************************************************************************/

unsigned int n, p, r;

unsigned int c[3][1000]; // dimensions are [n][(p-1)/n]

unsigned int sum[3000][2],temp[3000][2],save[3000][2];

unsigned int k[3000];

unsigned int g, h, i, j, l, t, count;

int d, e;

FILE *Outfp;

Outfp = fopen("gauss3b.dat","w");

count=0;

n=3;

for (g=0; g<200; g++) {
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  p=input[2*g];

  r=input[2*g+1];

  if ((p-1)!=((p-1)/n)*n)

  continue;

  count+=1;

/******************************************************************/

/* generate permutation of 1,2,3...,(p-1) (by Fermat's theorem) */

/******************************************************************/

 k[0] = r;

 for (i=1; i<p-1; i++) {

 k[i] = k[i-1]*r - ((k[i-1]*r)/p)*p;

 }

 for (i=0; i<p-2; i++) {

  if (k[i] == 1) {

  fprintf(Outfp,"error: r is not a primitive root of p \n");

  goto bskip;

   }

 }

/**********************************************/

/* sort permutation into cyclotomic cosets */

/**********************************************/

 for (h=0; h<n; h++) {

   j=0;

 for (i=h; i<p-1; i+=n) {

   c[h][j] = k[i];

   j=j+1;

   }

 }

/*****************************/

/* compute Gaussian sum */

/*****************************/

 for (i=0; i<(p-1)/n; i++) {

  temp[c[0][i]][0]=1; // set to 1

  temp[c[0][i]][1]=0;

 }

 for (i=0; i<(p-1)/n; i++) { // set to rho

  temp[c[1][i]][0]=0;

  temp[c[1][i]][1]=1;

 }

 for (i=0; i<(p-1)/n; i++) {

  temp[c[2][i]][0]=-1; // set to rho**2

  temp[c[2][i]][1]=-1;

 }

 temp[0][0]=0;
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 temp[0][1]=0;

/**************************************/

/* compute square of Gaussian sum */

/**************************************/

/****************************/

/* initialize sum squared */

/****************************/

 for (h=1; h<=p-1; h++) {

 t=temp[1][1]*temp[h][1];

compute cube of Gaussian sum

gauss3.htm[11/16/2021 1:27:45 PM]

 sum[h+1][0]=temp[1][0]*temp[h][0]-t;

 sum[h+1][1]=temp[1][0]*temp[h][1]+temp[1][1]*temp[h][0]-t;

 save[h][0]=temp[h][0];

 save[h][1]=temp[h][1];

 }

 sum[1][0]=0;

 sum[1][1]=0;

/*******************/

/* rotate array */

/*******************/

 for (h=p; h>1; h--) {

  temp[h][0]=temp[h-1][0];

  temp[h][1]=temp[h-1][1];

 }

  temp[1][0]=0;

  temp[1][1]=0;

/***************************/

/* compute partial sums */

/***************************/

 for (h=1; h<=p-2; h++) {

  j=temp[p][0];

  l=temp[p][1];

  for (i=p; i>1; i--) {

  temp[i][0]=temp[i-1][0];

  temp[i][1]=temp[i-1][1];

 }

 temp[1][0]=j;

 temp[1][1]=l;

 for (i=1; i<=p; i++) {

  t=temp[i][1]*save[h+1][1];

  sum[i][0]+=temp[i][0]*save[h+1][0]-t;

  sum[i][1]+=temp[i][0]*save[h+1][1]+temp[i][1]*save[h+1][0]-t;

 }
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 }

/****************************/

/* initialize sum cubed */

/****************************/

 for (h=1; h<=p-1; h++) {

  temp[h+1][0]=0;

  temp[h+1][1]=0;

 }

  temp[1][0]=0;

  temp[1][1]=0;

/***************************/

/* compute partial sums */

/***************************/

 for (h=1; h<=p-1; h++) {

  j=sum[p][0];

  l=sum[p][1];

  for (i=p; i>1; i--) {

  sum[i][0]=sum[i-1][0];

  sum[i][1]=sum[i-1][1];

 }

 sum[1][0]=j;

 sum[1][1]=l;

 for (i=1; i<=p; i++) {

  t=sum[i][1]*save[h][1];

  temp[i][0]+=sum[i][0]*save[h][0]-t;

  temp[i][1]+=sum[i][0]*save[h][1]+sum[i][1]*save[h][0]-t;

   }

 }

/********************************/

/* write cube of Gaussian sum */

/********************************/

 fprintf(Outfp," %d, %d, %d, \n",p,temp[1][0],temp[1][1]);

 printf(" %d, %d, %d, \n",p,temp[1][0],temp[1][1]);

  d=(int)temp[1][0]-(int)temp[p][0];

  e=(int)p;

  if (d!=(d/e)*e) {

  fprintf(Outfp," error \n");

  printf(" error \n");

  goto bskip;

   }

 }

bskip:

fprintf(Outfp," count=%d \n",count);

printf(" count=%d \n",count);
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 fclose(Outfp);

 return(0);

}

Cite this article as: Darrell Cox, Sourangshu Ghosh and Eldar Sultanow (2022). Quadratic, Cubic, Biquadratic, and
Quintic Reciprocity. International Journal of Pure and Applied Mathematics Research, 2(1), 15-39. doi: 10.51483/
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