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Abstract
The present paper introduces a method of basis transformation of a vector space that is
specifically applicable to polynomials space and differential equations with certain
polynomials solutions such as Hermite, Laguerre and Legendre polynomials. The method
is based on separated transformations of vector space basis by a set of operators that
are equivalent to the formal basis transformation and connected to it by linear combination
with projection operators. Applying the Forbenius covariants yields a general method
that incorporates the Rodrigues formula as a special case in polynomial space. Using the
Lie algebra modules, specifically  (2, R), on polynomial space results in isomorphic
algebras whose Cartan sub-algebras are Hermite, Laguerre and Legendre differential
operators. Commutation relations of these algebras and Baker-Campbell-Hausdorff
formula gives new formulas for special polynomials.
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1. Introduction

In mathematical physics and specifically quantum mechanics, the solution of many problems requires solving the
differential equations and their eigenvalues problem . Hermite, Laguerre and Legendre polynomials and related differential
equations are among the most applicable eigenvalues problem in physics and mathematics (Ismail et al., 2005;  Arfken
and Hans-Jurgen, 1972). Schrodinger equation for hydrogen atom reduces to Legendre differential equation and quantum
harmonic oscillator requires Hermite polynomials and related differential equation. The well-known Rodrigues formula
yields the solutions (eigenfunctions) of many of these differential equations (Rasala, 1981). In this paper we interpret
the Rodrigues formula as the transformation of some specific basis in polynomial space to another polynomials
(eigenfunctions) of associated differential equations. This approach is feasible, provided that the transformation
operator to be considered as a set of operators acting on each basis separately. It is shown that the overall action of
these operators is equivalent to a single linear operator. As an example, the change of basis vectors in two dimension
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can be made by a matrix of rank 2. The action of this matrix could be equivalent with the actions of two different matrices
that acts on each basis separately. The relation between these operators achieved by applying projection operators as
is proved in the Section 2. The connection between separated basis transformation and umbral composition has been
revealed by a theorem in Section 2. It is proved that by knowing the first two polynomials of Hermite, Laguerre and
Legendre polynomials the related differential  equations could be retrieved by using the method based on the separated
transformation of original basis and Forbenius covariants as projection operators. The examples in Section 2 clarifies
the details of this method. By using the Rodrigues formula as the separated operators acting on the original basis, we
acquire the form of related differential equations. In Section 3, we introduce the Lie algebra modules on vector space of
polynomials. The  and   has been known as the Lie algebras connected to symmetries in polynomial and
monomial space (Post and Nico, 1996; Turbiner, 1992). We prove that the conjugation (similarity transformation) of
generators of these Lie algebras, yields isomorphic algebras that their Cartan subalgebras are Hermite, Laguerre and
Legendre differential operators. The raising and lowering operators has been introduced in section should be omitted
4.2 and 4.4. In Section 4.10, applying Baker-Campbell-Hausdorff formula (Matone, 2016) on the basis of these isomorphic
algebras, gives new relations of Hermite and Laguerre polynomials and their generating functions. Section 3.6 proves
and represents a general form of differential-operator representations of . In Section 4.9, we propose a technique
for solutions of differential equations based on raising operators acquired from associated Lie algebras.

2. Separated Operators of Basis Transformation

Let V be a n-dimensional vector space with basis vectors e1, e2, ..., en. The linear operator that transforms these basis to
another basis 1 2, , , ne e e   , normally is defined as a unique linear operator O in the matrix form. In present theory we
define a set of linear operators O1, O2, ..., On; each one acts separately on the corresponding basis as follows:

i i iOe e ...(1)

The result of the action of operator O and the set of Oi on the initial basis are the same, but Oi as separated basis
transformations allow to choose a wide range of Oi operators whose overall transformations are equivalent to the
operation of O. On the other hand, in many problems such as Rodrigues type formulas the separated basis transformation
Oi are more accessible than overall operator O. In the context of differential operators, Oi could be regarded as the
operators that transform the initial basis (monomials) in polynomial space to another basis as for example we observe
in Rodrigues formula for Laguerre polynomials as the solutions (eigenfunctions) for Laguerre differential equation:

 1 1
!

n n
nL D x

n
 

This equation can be interpreted as the transformation of initial basis (1, x, x2, x3, ...) to new basis Ln (Laguerre
polynomials) by the action of the operator

 1 1
!

n
nO D

n
 

Respect to Rodrigues formula, for all related differential equations such as Legendre, Chebyshev and Bessel
Equations, there are separate and independent operators for each basis. Therefore we can apply a set of operators Oi

instead of a unique operator O to transform the initial basis in polynomials space. This method obviates the need to find
the unique linear operator O with the same action on all initial bases. We will show the relation between Oi and O in
Proposition 2.1 after defining the projection operators as follows.

Let introduce the projection operators P1, P2, ..., Pn by the definition:

PiV = Viei; Piej = ijei ...(2)

where V  V is a vector expanded as:

i ii
V V e ...(3)

From (2) we have: ;i i j i iji
P I PP P 

as the main condition for projection operators (I is identity operator).
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Remark 1: Projection operators defined in Equation (2), are linear operators.

We show that by basis transformations according to (1), the projection operators Pi are transformed as:

  1

i i i j jj
P O P O P


  ...(4)

Theorem 2.1: The generalized form of projection operator under separated basis transformations i i iOe e  is:

  1

i i i j jj
P O P O P


 

Proof: Respect to basis transformation i i iO e e  and Equaiton (2) we have:

 i i i i i i i j j ij
e P e P O e P O P e        ...(5)

Again, with substitution i i ie O e   Equation (5) reads as:

 i i i j j ij
O e P O P e  ...(6)

It is valid for all ei with identity Oiei = OiPiei, Equation (6) becomes:

 i i i j jj
O P P O P  ...(7)

Or:   1

i i i j jj
P O P O P


 

As we expected.

Proposition 2.1: The transformation of projection operator defined in Equation (4) is equivalent to a similarity transformation:

     1 1

i k k i j j i i j jk j j
P O P P O P O P O P

 
    ...(8)

Proof: Expansion of the first two terms on left side considering PiPj = Piij yields:

 k k i i ik
O P P O P

Therefore we have the right side of Equation (8).

Equation (8) implies the similarity transformation of Pi under the basis transformation made by operator i ii
O O P .

Therefore the operator O is the linear operator for transforming all basis ei. Operator O also yields transformations of all
linear operators K in vector space V under basis transformation i ie Oe   by the similarity transformation.

    1
1

k k j jk j
K OKO O P K O P


    

Remark 2: Equation (4) meets the projection operator conditions:

a)     1 1

i i i j j i i j ji i j i j
P O P O P O P O P I

 
       ...(9)

     1 1
1

i i k k i j j i i j jk j j
P OPO O P P O P O P O P

 
    

The action of O and Oj on a basis ej is the same.

 j i i j j j j j j ii
Oe O P e O P e O e e   

This implies that the action of O and Oj on ej is equivalent.

b) Respect to Equations (4) and (9) we conclude:
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           1 11 1

i j i i k k j j l l k k i j j k k j j jk l k j k j
P P O P O P O P O P O P P O P O P P O P

                      ...(10)

Middle terms in right side of  Equation (7) reduce to identity operator and thus:

    1

i j k k i j j jk j
P P O P PP O P


     ...(11)

Recalling PiPj = Piij and Equation (4) we obtain:

  1

i j i i j j ij i ijj
P P O P O P P 


   

This proves the idempotency of iP i.e., iP iP = iP

Where iP denoted as posterior probability analogy..

Equation (4) is the unique formula for iP  and other forms in spite of their validity for satisfaction of projection

operator conditions, i.e., Equation (3), are not the right candidates. As an example, we may propose this formula for iP :

  1

i j j i ij
P O P PO


  ...(12)

It is straightforward to investigate that this definition is compatible with conditions, Equation (3) but if we multiply
both sides by ie we obtain:

 j j i i i i ij
P O P e PO e  

Respect to Equations (1) and (2) we get:

 j j i i i ij
P O e PO e 

One of the solutions results in a false outcome:

 j j i ij
P O PO

Proposition 2.2: The product of projection operators is associative.

Proof: Let projection operators iP and iP correspond to Oi and iO  as transformation groups of coordinates, i.e.

  1

i i i j jj
P O P O P


 

And   1

i i i j jj
P O P O P


     

Substitution of first relation into above equation results in:

    
11 1

i i i i j j j j j j jj j j
P O O P O P O O P O P

         

    1 1

i i i i j j j j j j jj j j
P O O P O P O P O O P

         

After vanishing of two central terms:

  1

i i i i j j jj
P O O P O O P


   

This is compatible with Equation (4) by replacing Oi with i i iO O O  . Therefore, the corresponding projection operator
for two consecutive transformation Oi and iO  is equivalent the projection operator of i i iO O O   transformation.

Pi   = Oi  Pi(jOj   Pj)
–1
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Remark 3: As is proved, the operators j jj
O P  and O are equivalent operators. Respect to Equation (9), the projection

operator Pi transforms as a similarity transformation under the action of operator j jj
O P , therefore the initial basis

should be transformed by this operator and consequently j jj
O P and O are equivalent.

We show the identity Equation (4) is also valid in function space, where the linear projection operators are defined.

Proposition 2.3: Let V be a n-dimensional function space over the real field F with a set of orthogonal basis functions
i and inner product defined on a closed interval [a, b].The same definition in Equation (2) can be applied on these basis

b

i i i i ia
PF c Fdx     ...(13)

where ,
b

i i ia
c F Fdx   ...(14)

Are the coefficients in expansion of square integrable function F in the basis i calculated by inner product of i and
F over the interval [a, b].

Proof: With the identity Equation (4) we conclude:

 i j j i ij
P O P O P 

Then we have:  i j j i ij
P O P F O PF 

Respect to Equations (13) and (14) we have:

  b

i j j j i i ij a
P O Fdx O Fdx       ...(15)

Regarding Equation (1) we can choose i i iO    as transformed basis that results in:

 b b

i j i i ij a a
P Fdx Fdx        ...(16)

With the definition, Equation (2) of projection operator we have:

i j ij jP    

Therefore the Equation (16) respect to (14) reads as:
b

i i i ia
Fdx c   

i i i ic c  

So, the identity Equation (9) is valid for operators in function spaces.

Proposition 2.4: Differential operators with certain eigenvalues and eigenfunctions can be linearly expanded by their
projection operators.

Proof: Let the differential operator D is characterized by eigenfunctions relation:

i i i D ...(17)

The eigenfunctions i are linearly independent and are the basis vectors, i.e.: Pij = ijj .

where Pi is the projection on ith subspace, then by the identity:

 i i i j j ij
P     D ...(18)

The validity of this equation for all i yields:

j jj
PD ...(19)

That proves the proposition.
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Theorem 2.2: Let the initial basis ei correspond to some set of linearly independent non-homogenous polynomials
such as the regular bases (1, x, x2, x3, ...). After transforming the bases by equation i i iOe e  to new bases ie which
correspond the new linearly independent polynomials Pn(x), if D denoted as the differential operator with ei or equivalently
xn (n-th exponent of x) as its eigenfunctions (or eigenvector), then the corresponding differential operator D  with
eigenfunctions Pn(x) can be obtained by the relation:

D    1

k k k j jk j
O P O P


   ...(20)

where k  are eigenvalues of D .

Proof: Respect to Equation (19) the expansion of D  in terms of iP  reads as:

D i ii
P  ...(21)

where jP  are projection operators onto the i-th subspace (i.e., ie ). Substitution of iP  in Equation (21) by Equation (4)
results in:

D     1 1

i i i j j i i i j ji j i j
O P O P O P O P 

 
      ...(22)

This proves the theorem.

2.1. Projection Operators in Terms of Resolvents

Associated to any differential operator in Hilbert space there are projection operators in terms of their resolvent, i.e.

  1
vi

i c

dP
I


 
 D  and 

  1
vi

i c

dP
I







 D
...(23)

Using Equations (21) and (22) we obtain:

1

v v vi i j
i jjc c c

d d dO O
I I I
  

  


         

  D D D
...(24)

For a unique transformation O = Oi for all i we get:

1

v vi ic c

d dO O
I I
 

 

      D D

with expansion of resolvents 
d
I


 D
 as a Neumann infinite series (polynomial), it is proved that the corresponding

differential operator after action of operator O on the base functions i as defined in Proposition 2.1, can be presented
by a similarity transformation:

1O O D D ...(25)

Example 2.1:  Eigenfunctions of the differential operator d
dx

D =  could be found as n = enx. Transforming by
nx

n n nO x xe      . The resulting corresponding differential operator respect to proposition 2.1 after substituting O
= x reads as:

1 1
2

1 1x x x x
x x

         
 

D D D D ...(26)

Action of this operator on xenx gives:

1 nx nx nx nx nxxe e e nxe nxe
x
        

 
+D ...(27)
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Thus, the eigenfunctions of this operator are xenx as expected. Because of the similarity relations of operators D  and
D , their eigenvalues are identical.

Theorem 2.3: Let the linearly independent monomials pm(x) and qm(x) of polynomials Pn(x) and Qn(x) of degree n are
connected by the operators Oi as defined in equation (1) i.e.,

qm(x) = Om pm(x) ...(28)

Denote Pm as projection operators that project functions of variable x on basis pm(x) with the definition of equation (2)

Pm pn(x) = mn pn(x)

Then the operator m mm
O O P  acts as umbral composition on polynomial Pn(x).

Proof: Let expand Pn(x) in terms of monomial basis pm(x)

   n nm mm
P x a p x ...(29)

Then action of O on Pn(x) gives

         n i i nm m i ni i ni ii m i i
OP x O P a p x O a p x a q x      ...(30)

This implies that the action of O on Pn(x) replaces the monomials pm(x) with qi(x) while the coefficients anm in the
expansion remains unchanged. This means that the operation of O is equivalent with umbral composition by the
definition

 n nm mm
P oQ a q x ...(31)

This definition coincides the action of O on pn(x). Application of this theorem for finding the generating function of
Hermite polynomials has been shown in Section 4.2.

2.2. Forbenius Covariant of Operators

For other representation of projection operator in terms of differential operator we apply the  Forbenius covariants
(Horn and Charles, 1991) as projection operators (matrices) which are the coefficient of Sylvester’s formula. For a
differential operator D in polynomial space, the projection operator on the one-dimensional eigenfunction subspaces
are given by

1

n k
l k

l k

P k l
 


 

 D
...(32)

These operators act on the functions in function space and yields their projections on basis i which are the
eigenfunctions of D with corresponding eigenvalues i.

2.3. Similarity Transformation

Respect to Equation (9) and related proposition, if we substitute OiPi with  k kk
O P  respect to the identity,, PiPj = ijPi

we have:

     1 1

i k k i j j i i j jk j j
P O P P O P O P O P

 
    ...(33)

This equation is a similarity transformation of Pi under the operator k kk
O P . This similarity transformation

corresponds to the basis transformation i i iOe e . Actually,, k kk
O P  as an operator Ô  transforms all basis ei to ie  and

corresponds the coordinate transformation matrix. From this equation we can deduce similarity transformation for other
operators provided that the operators in similarity transformation have common eigenvalues. Therefore the differential
operators with identical eigenvalues could be related by similarity transformation. As an example, differential operator

dx xD
dx

 D  with basis (eigenfunction) n = xn transforms to another differential operator D  with eigenfunction i

after the basis transformation i i iO   . Therefore we have the similarity transformation:



Manouchehr Amiri / Int.J.Pure&App.Math.Res. 3(1) (2023) 77-109 Page 84 of 109

    1

k k j jk j
O P O P


   D D ...(34)

If all Oj are the same namely O, Equation (34) will be reduced to:

    1

k jk j
O P O P


   D D

1O O D D

 In these cases that the single operator transforms all bases, the exact closed form of related differential operator
could be derived by this method. However, for cases with separate Oi, the validity of the retrieved differential operator
relies on the action on the first two polynomials as we show in next sections. The following example clarifies the method.

Example 2.2: Let the vector space V spanned by the linearly independent basis (1, ex, e2x, ...) which are the eigenfunctions

of operator 
d
dx

D . If these basis transforms to the new set of basis by multiplying with 
2

2
x

e  i.e., 
2 2 2

2
2 2 2, , , ...
x x xx x

e e e
  

  
 

then the corresponding operator with these new basis as its eigenfunctions could be obtained by Equation (34). In this

case 
2

2
x

kO O e  . Thus, the Equation (34) reduces to:

1O O D D

2 2

2 2
x x

e e


 D D

The term 
2

2
x

e


D  is not just the derivative of 
2

2
x

e
 , but an operator that is equal to:

2 2 2

2 2 2
x x xde e e

dx

   
   

 
D D

Then we have: 
2 2 2 2 2

2 2 2 2 2
x x x x xde e e e e

dx

    
        

D = D D

2 2 2

2 2 2
x x x

e xe e
  

    
 

D = D

 x  D = D

The eigenfunctions of this operator are 
2

2
x nx

e
  with eigenvalues n as expected. It is noteworthy to note that the

expression for probabilist’s Hermite polynomial He1 with the definition:

2 2

2 2
1

x x

e
dH e e
dx





Differs from D , because in this definition the term  is not an operator but merely the 
2

2
xd e

dx



derivative of 
2

2
x

e
 .

It is easy to prove that any function of D  can be expanded in terms of D  as follows:

    1f Of O D D

2.4. Separated Basis Transformation Method Based on Forbenius Covariants

Another approach to find D  in terms of D and Oj is to apply the Forbenius covariant operators  as projection operators
as mentioned in Equation (32).
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 1

N l
k l

k l

P 
 




 D
l  k ...(35)

These operators are projection operators onto the k-th one-dimensional sub-space (basis) (Howe and Eng, 2012)
substituting these projectors in Equation (34) results in

1

1 1

N Nl l
k jk jl l

k l j l

O O l j 
   



 

             
  D D

D D ...(36)

N denoted as the dimension of function or polynomial space.

This method in comparison with previous methods are more applicable because the calculation of inverse of a
product of differential operators is easier than other methods.

In the following sections we introduce an applicable method to find D  in terms of D. Taking into account the
Equation (22) we have:

   1

i i i j ji j
O P O P


   D ...(37)

If all Oi are the same i.e., Oi = O, then Equation (37) reduces to

  1
i ii

O P O   D ...(38)

The condition of identical eigenvalues for D  and D is not necessary in Equation (37) and the case of identical
eigenvalues are special case of this equation. we apply this equation restricted to the first two polynomials i.e., two-
dimensional polynomial space. Substitution of Pi in Equation (37) by Forbenius covariants Equation (35) yields an

applicable method as we will show in examples. It is noteworthy to recall that the term j jj
O P  stands for a linear

operator (equivalent to a matrix) that transforms the basis (1, x, x2, ...) of polynomials space to another basis. For
example, it transforms basis (1, x, x2, ...) to Hermite polynomial Hen as new linearly independent basis by the techniques
that is presented in next section.

2.5. Applications of Separated Basis Transformation Method

In the Sturm Liouville problem and related differential equations and their specific solutions such as Hermite, Laguerre,
Legendre and Jacobi polynomials, the transformation of basis in function space seems to be an interesting subject. For
example, transformation of basis (1, x, x2, x3, ...) under the multiple differentiation which is compatible with Rodrigues’
formula to derive Hermite polynomials, presented as follows:

2

2
D

n
enH e x



 ...(39)

where 
dD
dx



In the case of Laguerre polynomials, we have the transformation:

 1 1
!

n n
nL D x

n
  ...(40)

Respect to our theory, these transformations are compatible with the operator action of On separately on basis
(1, x, x2, x3, ...), for Hermite polynomial we have:

2

2
D

nO O e


  ...(41)

And for Laguerre polynomials:

 1 1
!

n
nO D

n
  ...(42)



Manouchehr Amiri / Int.J.Pure&App.Math.Res. 3(1) (2023) 77-109 Page 86 of 109

We introduce the operator xD as the unique operator with basis (1, x, x2, x3, ...) as its associated eigenfunctions with
eigenvalues (0, 1, 2, ...):

xD(xn) = nxn

Therefore we can use the equation (38) to find the differential operator that its polynomials are determined by
applying related On on basis (1, x, x2, x3, ...) as in Equations (39) and (40). By substitution of Pk  and On in Equations (36)
and (37) and  the Forbenius covariants (35) and D = xD   in Equation (36) we recover the corresponding differential
equations of eigenfunctions such as Hen and Ln as presented in net examples. The presented technique uses the first
two polynomials i.e., the two-dimensional space of polynomials with monomials of order 1 and 0. This facilitates the
calculation of desired differential equations and shows that if an infinite set of polynomials present the eigenfunctions
of a unique differential operator, then applying this technique for the first two polynomials gives the exact form of
related differential equation. We clarify this method by the following proposition

Proposition 2.5: Let the set of linearly independent polynomials Pn are the eigenfunctions of a differential operator D

and the set of original basis [1, B(x), B2(x), ..., Bn(x)] are the eigenfunctions of differential operator D. Then applying the
Forbenius covariant operator defined in Equation (35) and Equations (36) and (37) for the first two  polynomials
(eigenfunctions)  and P1, yields the corresponding differential operator D  from D.

First, we prove this proposition for Rodrigues formula as the action of operators On on the initial basis Bn(x) in
polynomial space to transform them to new basis Pn that correspond to the desired differential operator D (i.e., differential
equation) as its eigenfunctions.

3. Rodrigues’ Formula as a Special Case of Separated Basis Transformation

In this section we prove the compatibility of Rodrigues’ formula with our presented techniques and show that substitution
of On in Equation (43) by Rodrigues’ formula transformation, yields the corresponding differential operators and
equations.

Proof: Due to the presented theory, we showed that if the bases en of a vector space V which are the eigenfunctions of
differential operator D, are transformed separately by operators On, the transformed differential operator obeys the
Equation (43) i.e.,

   1

i i i j ji j
O P O P


  D = ...(43)

We check the basis transformation by Rodrigues formula (Rasala, 1981):

 1 n n
n D B x


   P

where  defined by the relation 
A B

B






  with A as a polynomial of first degree.

If we choose monomial Bn(x) as the original basis of vector space:

[1, B(x), B2(x), ..., Bn(x)]

The Rodrigues formula could be chosen as the action of operator:

 1 n
nO D 


  ...(44)

On these basis. Therefore it is a special case of separated basis transformation.

The suitable operator with eigenfunctions Bn(x)can be presented as

 
     n nB x

DB x nB x
B x


 ...(45)

where  B x  denoted as the derivative of B(x). The  
 

B x
D

B x
 should replace   in Equation (35):
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 
 

1

l
N

k l
k l

B x
D

B x
P



 





 ...(46)

Respect to Equation (43) by replacing On by Rodrigues formula and Pn by Equation (46) we get:

 
    1

1

1 l
Nn

i j ji jl
k l

B x
D

B x
D O P


 
  





  
        

     

 D

Let   1
1

j jj
O O P


    then we obtain:

 
  1

1

1 l
Nn

ii l
k l

B x
D

B x
D O


 
  




  
        

     

 D
...(47)

Taking into account the 2-dimensional space, and using Equations (44) and (47) we have:

 

 
   

 0 1 1
1 1

1 10, ...,

B x
D

B x B x
O D P D

B x
 

  


     
  

Thus the Equation (47) reads as:

 
 

 
 

1 1
1

1

1 1 1B x B x
D D O D D O

B x B x
  
  

    
             

D ...(48)

2
2 1

2

B B B B BD D D O
B B B




          
D

If we assume 
A B

B






  (as a crucial assumption in Rodrigues formula) this equation reduces to:

2 1
21

A B B BD D D D O
B B B

             
D

2 1
2

A B B BD D D O
B B B

        
D ...(49)

Acting both side on P1 as the second eigenfunction of D , we have:

2 1
1 12

A B B BD D D O
B B B

        
D P P ...(50)

The term O–1P1 equals B(x), thus:

 2
1 2

A B B BD D D B x
B B B

        
D P ...(51)

 1 2

A B B B B B BD B A B B D
B B B B B

                 
D P
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1 BD A  D P

1
1D D BD A  D P ...(52)

The term 1DP will be a constant , thus:

1D BD A   D

Or:

2BD AD   D ...(53)

This implies that Rodrigues formula gives the solutions (or eigenfunctions) of the differential operator BD2 + AD and
related differential equation up to a constant coefficient. i.e.,

(BD2 + AD)y = y

The following examples clarify this technique for some polynomials.

Example 3.1: Laguerre Differential Equation

Let we intend to find the differential equation which corresponds to a set of linearly independent polynomials in
variable x. For example, we are given a few first Laguerre polynomials i.e., (1, 1 – x, ...) and we know the operator that
maps the standard basis (1, x, x2, ...) to Laguerre basis i.e., operator presented in (42).

We can recover the corresponding Laguerre differential equation (operator) via the formula:

   1

i i i j ji j
O P O P


   D ...(54)

Proof in 2 dimension (first 2 polynomials)

We restrict calculation in 2-dimensional polynomial space with basis (1, x).These polynomials are transformed by Oi

to Laguerre polynomials in the same dimension, i.e., (1, –x + 1). Thus, the corresponding operator xD will be transformed
to Laguerre differential operator by the Equation (43).

Substitution of Oi by Equation (42) and taking i  as the eigenvalues of Laguerre differential equation in 2-dimensional
space of polynomials and replacing projection operators Pi for basis (1, x) by Equation (35) into Equation (37) results in:

   11 1

0 0i i i j ji j
O P O P



 
   D ...(55)

We have i  = i and 0 = 0, 1 = 1. Then Equation (44) reduces to:

  1
1 1 0 0 1 1O P O P O P   D ...(56)

By Equations (35) and (42) we obtain:

1 11 1
0 1 0 10 0

0 1 0 1

11, 1, ,
1 1l l

xD xDO O D P P 
    

  
      

   D D

Therefore we have:

O1P1 = (D – 1) xD = D + xD2 – xD

And:      11 2 2
1 1 0 0 1 1 2 1O P O P O P D xD xD D xD xD

        D ...(57)

If we denote the (D + xD2 – xD) as D, we can reduce the Equation (46) as follows:

   1 1
1 1 0 0 1 1 1O P O P O P       D DD D ...(58)

The term
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0 0 1 1
ˆ1O P O P O    DD ...(59)

Is the linear operator which transforms the basis (1, x) to Laguerre basis (1, –x + 1) and vice versa If we restrict the
action of operators to 2-dimensional polynomial space. Therefore we have:

 1ˆ 1O x x    ...(60)

If we act both sides of Equation (47) on another basis (–x + 1) we get as well:

     1ˆ1 1 1x O x x x          D D D D

Or briefly:    1 1x x     D D ...(61)

(Note that –D.1 = 0)

The Equation (61) implies that the action of both operators D and –D on basis (1, –x + 1) are identical and Therefore
the simplest form of operator D  which its eigenfunctions are Laguerre polynomials and its related transformation
operators are Oi, reads as:

 2xD xD D    D D = - ...(62)

This is the exactly the Laguerre differential equation with positive eigenvalues, i.e.:

–(xD2 – xD + D)y = ny ...(63)

Action of this operator on the first basis i.e., “1” gives 0 as the first eigenvalue and Therefore the required conditions
for validity of this differential operator are met.

Proof in 3 dimension (first 3 polynomials)

In 3-dimension with basis  211, 1, 4 2
2

x x x     
 

 of Laguerre polynomial and (1, x, x2) of original basis, considering

eigenvalues 0 = 0, 1 = 1, 2 = 2, the D  reads as:

     
1 1

1 1 2 2 0 0 1 1 2 22i i i j ji j
O P O P O P O P O P O P O P

       D ...(64)

  1
1 1 2 2

ˆ2O P O P O  D

Here 1Ô  denotes the last term in Equation (64). Acting both side on basis (–x + 1) results in:

     1
1 1 2 2

ˆ1 2 1x O P O P O x       D

Respect to Equation (60) and the identity P2x = 0 we have:

  1 11x O Px    D ...(65)

In this dimension P1 can be find as:

 2 0 2
1 0

1 0 2

2 2
1 1 1 2

l
l

l

xD xD xDP xD xD xD  
   

                     
 D

Then Equation (65) reads as:

     1 1 2x D xD xD x      D

     1 1x D xD x      D

     1 1 1x D xD x         D

    21 1x xD xD D x        D
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This proves:

 2xD xD D    D

As the Laguerre differential operator.

Example 3.2: Hermite Differential Equation

The same technique could be applied to derive Hermite differential equation by the formula Equation (37). Because all
On that transforms basis (1, x, x2, x3, ...) to Hermite polynomials are equal to O as is shown in Equation (41), after getting
Pk by Equation (35) and substitute them in Equation  (37) we have:

   1

i i ji j
OP OP


   D

   1

i i ji j
O P O P


  

   1
1

i i ji j
O P P O


  

Respect to 1jj
P   we get:

  1
i ii

O P O   D

Expanding the sum for eigenvalues 0, 1i i     and substitution of O byEquation (41)we have:

 
2 2

2 2
1

D D

e P e


 D

From Equation (35) we calculate P1 as:

1 0
1 0

1 0

0
1 0l

P 
 

 
  

  D D
D

We know (1, x, x2, x3, ...) are the eigenfunctions of xD, thus by D = xD we have:

 
2 2

2 2
D D

e xD e


 D ...(66)

This equation can be interpreted as a similarity transformation that maps xD into D  after basis changes. This will
be hold just for the cases that eigenvalues are common between xD and D  as we see in Hermite and Laguerre
differential equations.

Expansion of 
2

2
D

e
  and 

2

2
D

e  results in:

 
2 4 2 4

1 1
2 8 2 8

D D D DxD
             
   

 D ...(67)

2 4 3 5

1
2 8 2 8

D D D DxD x
           
  

 D

2 4 2 4 3 5

1
2 8 2 8 2 8

D D D D D DxD xD xD x x
                  
    

  D

In the 2-dimensional space of polynomials the orders higher than 2 for Dn will be omitted, as it could be verified by
action of both side on basis x. By omitting the higher orders, we obtain:

2

1
2

D xD
    
 

D
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 
2

21
2 2

DxD xD xD D D xD     D

 2 2 31
2

xD D D xD    D

Omitting xD3 results in:

 2 2xD D D xD     D ...(68)

This is the well-known Hermit probabilist’s Hermite differential operator with Hermite polynomial as its eigenfunctions
and positive eigenvalues 0, 1, 2, … as its eigenvalues.

Example 3.3: Legendre Differential Equation

For Legendre polynomials we have:

 21 1
2 !

nn
n n D x

n
 P ...(69)

That transforms the basis set S = {1, (x2 – 1), (x2 – 1)2, ...} to Legendre polynomials. We can choose the appropriate
operator D whose eigenfunctions are these basis. Simply we write:

2 1
2

x D
x


D ...(70)

Eigenfunctions of this operator are members of the set S.

The transforming operator is

1
2 !

n
n nO D

n
 ...(71)

In this case the eigenvalues of D  and D  (Legendre differential operator) are not identical and Therefore the similarity
transformation is not valid. However, we can apply the Equation (37) after determining the Pi from Equation (35).

For calculating Pi in 2-dimension, we have:

2

2
1 1

0 0
0 1

1 1 12 1
1 2l

x D xxP D
x


 

  
   

  D ...(72)

2

2
1 0

1 0
1 0

1 0 12
1 0 2l

x D xxP D
x


 

  
  

  D ...(73)

Now we get:

2 2 2

1
1 1 1 1

2 2
2 2 2 2i i ii

x x xO P O D D D D D
x x x


       
 

 ...(74)

From equation (37) and (63) we get:

   1

i i i j ji j
O P O P


   D

 
2 21

11 1
2 2j jj

x xD O P D DO
x x


   D ...(75)

Where   1
1

j jj
O O P


  
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By action of both sides of Equation (75) on basis  as the second basis of Legendre polynomials in two dimension,
we have:

2
11

2
xx D DO x

x
 D ...(76)

Respect to O–1x = x2 – 1, Equation (65) reads as:

 
2

21 1
2

xx D D x
x
  D

   
2

1 1 2
2

xD D x D x
x

  D

   1 2 1D Dx D x  D

 1 2 1D D x  D

   2 21 1D x D D x D     D ...(77)

Expansion of Equation (77) reads as:

 2 21 2x D xD      D

Which is the Legendre differential operator with positive eigenvalues n(n + 1).

4. Hermit, Laguerre, and Legendre Differential Operator as Cartan Subalgebra of (2, R)
and  (2)

Let  (V) denote the linear transformation that maps vector space V onto itself. In this section we present isomorphic
Lie algebras to (2, R) defined by (2, R) module on vector space V which is a linear map  defined by  (2, R)
 (V) that preserves the commutator relations of (2, R) algebra (Post and Nico, 1996; Howe and Eng 2012).

[a, b] = [(a), (b)] a, b  (2, R)

This representation is (2, R) module on vector space V.

First, we review the structure of irreducible vector field representation of (2, R). The generators of this algebra in
matrix representation are as follows:

1 0 0 01
,

0 1 1 02
H X   
       

 and 
0 1
0 0

Y  
  
 

The commutation relations for this representation of (2, R) are:

[X, Y] = 2H, [H, X] = –X, [H, Y] = Y ...(78)

Let define a representation of (2, R) as its module on V that preserves commutation relations by differential
operators as its generators:

2, ,
2 x
nh xD e D f x D nx       ...(79)

With the similar commutation relations

[e, f] = 2h,   [h, e] = –e,   [h, f] = f

The Cartan sub-algebra H = h produces a decomposition of representation space:

j V V
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jV  are the eigenspace (eigenfunction) of generator h as Cartan sub-algebra of (2, R) and provide the solutions to
the related differential equation.

j jh jV V

In present paper the eigenspaces jV  are one dimensional and coincide the basis of polynomial space. These basis
are called weight vectors. For a finite dimensional representation there is a highest weight j = n that determines the
dimension of representation space by dimV = n + 1. As an example, the Cartan subalgebra of (2, R) can be represented
by h = xD with xn as its weight vectors (eigenfunctions) and integer n as eigenvalues. Due to the properties of (2, R),
the operator e acts as lowering operator A– and f as raising operator A+. The action of these operator on representation
basis (eigenfunction) of h lowers or raise the power of xn.

eVj = Vj–1,   fVj = Vj+1

In the following sections we will construct a set of isomorphic Lie algebras to (2, R) based on differential operators
of Hermite, Laguerre and Legendre equations whose Cartan sub-algebras are Hermit and Laguerre differential operators.
These algebras could be derived by similarity transformations (conjugation) of generators of (2, R) defined in Equation
(79). The similarity transformation is achieved by the transforming operator by which the original polynomial space
basis transforms to the deemed polynomial i.e., Hermite, Laguerre and Legendre polynomials as transformed basis.
These operators could be derived from Rodrigues’ formula as has been shown in previous examples. For each algebra
there exist a set of lowering and raising operators that derives the recursion equations for related polynomials.

4.1. Associated Lie Algebra of Hermite Differential Operator

We search for a Lie algebra   isomorphic to (2, R) algebra with generators to be defined based on Hermite differential

operators. Here we apply the transformation operator 
2

2
D

e
  as described in Equation (41) for Hermite polynomials to

derive similarity transformations (conjugation) of (2, R) bases as follows:

2 2 2 2 2 2

2 2 2 2 2 2
1 2 3, ,

D D D D D D

X e he X e ee X e fe
  

   ...(80)

 Equations (69) are the similarity transformations of Lie algebra  , that results in an algebra with basis Xi isomorphic
to  .

Then for X1 we have: 
2 2

2 2
1

D D

X e fe


 ...(81)

2 2

2 2
1 2

D DnX e xD e
    

 
...(82)

Respect to Equation (34) this equation reduces to:

1 2H
nX  D ...(83)

Where 2
H xD D  D  as proved in Equation (57), denoted as Hermite differential operator..

For X2 we get:

2 2

2 2
2

D D

X e De




Since the operator D is commutable with both 
2

2
D

e
  and 

2

2
D

e , we have:

2 2 2 2

2 2 2 2
2

D D D D

X De e e e D D
 

  

Similarly, for X3:
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 
2 2

22 2
3

D D

X e x D nx e


 

   
2 2 2 2

22 2 2 2
3

D D D D

X e x D e e nx e
 

 

2 2 2 2

22 2 2 2
3

D D D D

X e x e D ne xe
 

  ...(84)

To calculate this generator, first we know from Equation (57) that:

 
2 2

2 2
D D

H e xD e


 D ...(85)

Because D commutes with 
2

2
D

e  we obtain:

2 2

2 2
D D

H e xe D


 D

Or : 
2 2

1 2 2
D D

H D e xe


 D

With:  1 2 1
H D xD D D x D     D ...(86)

Therefore we have: 
2 2

2 2
D D

x D e xe


 

Multiplying this with itself results in:

 
2 2 2 2 2 2

2 22 2 2 2 2 2
D D D D D D

x D e xe e xe e x e
    

      
  

...(87)

With substitutions, Equation (84) reads as:

X3 = (x – D)2D – n(x – D) ...(88)

Then the list for generators of this representation of (2, R) is:

       2
1 2 3, ,

2H H
nX X D X x D D n x D x D x D n           D D

The Cartan subalgebra of this algebra is 1 2H
nX  D .

Clearly these generators span the Lie algebra   isomorphic to (2, R), which is a representation for an isomorphism
of (2, R). The commutation relations can be checked as:

 1 2 2,
2 2H H
n nX X D D D X              

   
D D ...(89)

         2 2
2 3,X X D x D D n x D x D D n x D D              ...(90)

2
12 2

2
nxD D X     

 

For [X1, X3], first we note:   3 HX x D n  D , and we use HD  instead X1 without any change in commutator result.
Thus, we have:

       1 3, H H H HX X x D n x D n        D D D D ...(91)
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Due to the identity:    H H H Hn n     D D D D

The Equation (80) becomes:

        1 3, H H H HX X x D n x D n        D D D D

       1 3, H H HX X x D x D n         D D D

       1 3, H H HX X x D x D n         D D D

Substitution of HD by xD – D2 gives:

        2
1 3, H HX X x D x D xD D n        D D

Replacing operator xD with its equivalence xD – 1 results in:

        2
1 3, 1H HX X x D x D Dx D n         D D

           1 3, H HX X x D x D x D D x D n           D D

      1 3, 1H HX X x D D x D n         D D

      1 3, 1H HX X x D D x D n         D D

    1 3 3, HX X x D n X   D

This proves the isomorphism of the Lie algebra   with basis X1, X2, X3 of (2, R)

4.2. Lowering and Raising Operators of Hermite Polynomials and its Generating Function

In this section we introduce the raising and lowering operators of Hermite polynomials which act on vector space
representation of (2, R). We denote raising and lowering operators as A+ and A– respectively. These operators act on
the weight vectors which are eigenfunctions of X1 or HD  i.e., the Hermite polynomials Hen. As an example, for Lie algebra

  the following relations could be considered.

1) Due to the properties of (2, R) algebra the generator X2 acts as a lowering operator A–. This implies that:

1n ne eD n


H H ...(92)

2) Consecutive action of the X1 and X2 generators on the eigenfunction Hen of X1 (i.e., the Hermite polynomial of degree
n) results in lowering of polynomial degree. Respect to Equation (81):

1 2 2n ne H e
nX X D   

 
DH H

12 nH e
n



   
 
D H

1
1

2 ne
nn



   
 

H ...(93)

This means that the operator X1X2 acts as a lowering (ladder) operator A– in the subspaces spanned by the Cartan
subalgebra X1 of  .

3) The raising operator can be derived from Equations (85) and (86):

 
2 2 2 2

2 2 2 2
D D D D

H e xD e e xe D
 

  D
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2 2

1 2 2
D D

H D e xe


 D ...(94)

If we act the right side of Equation (94) on a Hermite polynomial of degree n, respect to Equation (41)

we get:

2 2 2 2

12 2 2 2 .
n n

D D D D
n

e ee xe e xO e x x
  

 H H

2

1

1 12
n

D
n n

ee x Ox



   = H ...(95)

Thus Equations (94) and (95) yields:

   
1

1 2 1
n n n nH e e e eD xD D D x D



      D H H H H ...(96)

Therefore the operator x – D acts as raising operator A+ in the associated vector space spanned by 
neH .

4) If this method be repeated for X1X3 operator, we have:

   2
1 3 2n ne H e

nX X x D D n x D           
DH H

   2

2 n nH e e
n x D D n x D      

 
D H H

Taking into account Equations (95) and (96) we deduce:

 
1 1

2
1 3 2n n ne H e e

nX X x D n
 

     
 
DH H H

1 11 3 2n n ne H e e
nX X n

 

    
 
DH H H

1 1 11 3 1 1
2 2n n n ne e e e
n nX X n

  

          
   

H H H H ...(97)

Clearly the operator X1X3 acts as a raising operator A+.

The results of this section can be used to derive recursive relations for Hermits polynomials as follows:

Any combination of operators involved in Equations (92),(93),(95),(96) and (97) results in a recursive relation for
Hermite polynomials.

5) The generating function of Hermit polynomial can be derived by a method based on theorem 3.2 as follows.

By expansion of etx and acting the operator O defined in Equation (41) on it and taking into account the umbral
property of O proved in theorem 2.3. We have

 
2

'' ''2
0 0

,
! ! m

D m m m
tx

em m

t x tg x t Oe e
m m



 
    H ...(98)

Recall that the etx are eigenfunctions of the operator 
2

2
D

e


2 22 2
2 21

2 2

D t
tx tx tx tx txD te e e e e e e

  
       
 

 

Therefore we can replace D by t in Equation (98)
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 
2

''2
0

,
! m

t m
tx

em

tg x t e e
m




  H

 
2

''2
0

,
! m

t mtx

em

tg x t e
m

 


  H

This yields the Hermite polynomial generating function.

4.3. Associated Lie Algebra of Laguerre Differential Operator

For Laguerre polynomials the similarity transformation of the original basis of (2, R) will be obtained by operators in
Equation (42):

 1 1
!

n
nO D

n
 

For global transformation respect to the definition, we have:

 1 1
!

n
n n nn n

O O P D P
n

   

1 1 1
1 2 3, ,Y OhO Y OeO Y OfO    

These generators construct a Lie algebra   isomorphic to both (2, R) and  . Replacing h, e, f respect to (68) we
get:

 1 1 2 1
1 2 3, ,

2
nY O xD O Y ODO Y O x D nx O        

 

For Y1 due to Equation (36), substituting D  by 2
nxD  

 
 and D  by 2L

n D  simply we obtain:

1 1
1 2 2 2L

n n nY O xD O OxDO         
 

D ...(99)

Because of complex structures of O and Pn, we calculate the raising operator by recursive relation:

(n – xD)Ln = nLn–1

We use the operator n – xD as a lowering operator A–. Substitution of Ln by Oxn gives rise to:

(n – xD)Oxn = nLn–1

Multiplying both side from the left by O–1:

O–1(n – xD)Oxn = nO–1Ln–1

[O–1(n – xD)O]xn = nxn–1

Action of left side on xn equals the derivative of xn, then we have:

 1O n xD O D  

Or n – xD = ODO–1

The left side should be replaced by its operator equivalent i.e.,

   n L nn xD L xD L  D

Thus: 1
2 LY ODO xD   D

For Y3 we need OxO–1:
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  1 1 1
LOxO ODO OxDO    D

  1
L LOxO xD   D D

Or   11
L LOxO xD    D D ...(100)

And for Ox2DO–1:

     1 12 1
L L L L LOx DO xD xD xD         D D D D D

  12 1
L L LOx DO xD     D D D

Then Y3 reads as:

   1 1
3 L L L L LY xD n xD        D D D D D

   1
3 L L LY xD n    D D D

This operator acts as raising operator. Eventually for representation of (2, R) in basis of Laguerre polynomial and
related differential is an algebra   with generators:

   1
1 2 3, ,

2L L L L L
nY Y xD Y xD n          D D D D D ...(101)

To prove the isomorphism of   and (2, R) first, we calculate the commutation relation [Y1, Y2]:

     1 2,
2 2L L L L
n nY Y xD xD              

   
D D D D

     1 2, L L L LY Y xD xD      D D D D

 1 2, L LY Y xD xD   D D

We know: [xD2 + D, xD] = xD2 + D ...(102)

Because 2
L xD D xD   D , after substitution in (100) we have:

    2
2, ,L L LxD xD xD xD D xD Y            D D D ...(103)

Or: [Y1, Y2] = –Y2

This is compatible with (2, R) algebra.

For [Y2, Y3] we have:

     1
2 3 L L L LY Y xD xD n        D D D D ...(104)

       1 1
2 3 L L L L L L LY Y xD n xD xD n                  D D D D D D D

Respect to Equations (101) and (103), in second term, substitution of LxD D  by 2 LY xD D  yields:

         1 1
2L L L L L LxD xD n xD Y xD n                 D D D D D D

     1
L L L LxD xD xD n             D D D D

     1
L L L LxD xD xD n             D D D D

     1
L L L LxD xD n n        D D D D
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Replacing second term of Equation (104) by this, yields:

         1 1
2 3 L L L L L L L LY Y xD n xD xD n n                     D D D D D D D D

          1 1
L L L L L L LxD n xD xD n n                    D D D D D D D

          1 1
L L L L L L LxD n xD xD n n                    D D D D D D D

         1 1L L L L L L LxD xD n n n              D D D D D D D

    2
2 3 1 1L L L LY Y n n n         D D D D

For Y3Y2 we have:

         1 1
3 2 L L L L L L L LY Y xD n xD xD xD                    D D D D D D D D

   1
L L Ln xD xD      D D D

   1
3 2 L L L L LY Y xD xD n         D D D D D

Replacement of  L L xD  D D  with relations of [Y1, Y2] gives:

    1
3 2 2L L L L LY Y xD Y xD n           D D D D D

    1
3 2 1L L L L LY Y xD xD n          D D D D D

     3 2 1 1 1L L L L L L LY Y n n n                 D D D D D D D

Thus :

 2 3 2 3 3 2 1, 2 2 2
2L L
nY Y Y Y Y Y n Y         

 
D D ...(105)

This proves isomorphism of   and (2, R) as expected.

4.4. Lowering and Raising Operators of Laguerre Polynomials and its Generating Function

Applying the method used to derive lowering and raising operators for Hermite polynomial could be repeated for
Laguerre polynomials too. Respect to the properties of Lie algebra  , the generator Y2 acts as lowering operator A– and
Y3 acts as raising operator A+ on the weight vectors Ln which are the eigenfunctions of Y1 or LD :

 2 n L n n nY xD n xD   DL L L L

 2 1n n nY n xD n   L L L ...(106)

The action of Y1Y2 on Ln is also a lowering operator:

 1 2 2n L L n
nYY xD     

 
D DL L

 1 2 2n L n
nYY n xD    

 
DL L



Manouchehr Amiri / Int.J.Pure&App.Math.Res. 3(1) (2023) 77-109 Page 100 of 109

12L n
nn 

   
 
D L

11
2 n
nn 

   
 

L ...(107)

To derive raising operator due to the Equation (100) we have:

  1 1
L L xD OxO    D D

Action of both side on Ln gives:

  1 1
1

n n
L L n nxD Oxx Ox 

     D D L L ...(108)

Thus, the operator   1
L L xD   D D  acts as the raising operator A+ in weight vector space of Laguerre polynomials.

Proposition 4.1: The generating function of Laguerre polynomial is derived by projection operator method .

Proof: Due to umbral properties of operator n nn
O O P , as we proved in theorem 2.3, we have:

     2 2 2 2, 1 1n nn
g x t O xt x t O P xt x t        

n n n
n nn n

O x t t   L ...(109)

Substitution the series in xt powers with 
1

1 xt  and the identity exDne–x = (D – 1)n gives

  1 1 1,
1 ! 1

x n x
n n nn n

g x t O P e D e P
xt n xt

       
 

1
! 1

n n
x n x

nn

t ue D e P
n xu


  

   
 ...(110)

If [u0] denoted as extractor coefficient operator for u0 = 1, Then the term 1

n n

n
t uP

xu




 is equivalent to  0

1 1

n n n n

n
t u t uu P

xu xu

 

     

This yields

  01,
! 1

n n
x n x

n

t ug x t e D e u
n xu


     

01 1
! 1

n
x n x

n

te D e u
n u xu

         


Respect to Tylor series

       
2

2!
f x f x f x f x

       

We get

   

 
0 01 1 1

,
! 1 1

t
u

n
xx n x x

n

tg x t e D e u e e u
tn u xu x uu

               


 
 
 

 0 01,
11 1

1

t te eu ug x t u u xut tx uu t

 
         


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Expansion of the right side in terms of u with some algebra results in Laguerre generating function

  11,
1

xt
n t

nn
g x t L t e

t

 
   



4.5. Associated Lie Algebra of Legendre Differential Operator

The main difference between Legendre differential operator and Hermite or Laguerre differential operator is its eigenvalues.
For Hermite and Laguerre differential operators the eigenvalue are the same as the eigenvalues of original differential
operator xD. The eigenvalues of xD are integers n.

Correspond to eigenfunctions xn. The Hermite and Laguerre differential operators have the same eigenvalues and
therefore we can apply the similarity transformation OxDO–1 to derive both operators from xD. Note that operator O is
defined specific for each differential operator. For Legendre differential operator the eigenvalues are n(n + 1) which

differs from eigenvalues of operator 
2 1
2

x D
x


D  whose eigenvalues are integers n and eigenfunctions are (x2 – 1)n. In

this case we alter the original operator   to turn the same eigenvalues n(n + 1). This allows us to use similarity
transformation ODO–1 to construct Legendre associated Lie algebra isomorphic to (2, R). Let to add n2 to   and act
the result on the original basis (x2 – 1)n.

       
2

2 2 2 2 21
1 1 1 1

2
n n nxn x D n x n n x

x
 

        
 

D ...(111)

Therefore we choose 2nD  for similarity transformation of the form  2 1O n OD . Now we search for a Lie algebra
 isomorphic to (2, R) algebra with generators to be defined based on Legendre differential operators. We define the

following generators for Lie Algebra of Legendre Differential Operator.

1 1 1
1 2 3, ,Z Oh O Z Oe O Z Of O      

The generators , ,h e f    are different from h, e, f defined for (2, R) in previous sections. These operators are

defined to be compatible for original basis (x2 – 1)n. An isomorphic algebra to (2, R) with generators , ,h e f    represented
as:

   
222

2 2
11 , , 1

2 2 2
xx Dh D n e f D n x

x x x
        ...(112)

The commutation relations of these basis are:

   
2 2

2 21 1 1 1 1
,

2 2 2 2 4 2
x D D x Dh e D n D n xD D D xD e

x x x x x x x
                              

For  ,h f   we use the identity

2
2

1
1

h f n n
x

   


  2 2
2 2 2

1 1 1, , , , ,
1 1 1

h f f n n f f f n n f f f
x x x
                                 

  2 2

1 1,
1 1

h f f f f
x x

         

Some algebra shows

 ,h f f  

With these commutation relations, respect to Jacobi identity we have

 , 2e f h  
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This proves that generators , ,h e f    gives an isomorphic algebra to (2, R). Based on these basis and conjugation
them with operator O which is defined for Legendre polynomials in Equation (71), we could derive its adjoint algebra
with basis that are formed by Legendre differential operator. Due to Equation (34) and common eigenvalues of hand LD

(not be confused with LD  for Laguerre differential operator) we have

2
1 2 1 2

1
1

2 L
xZ Oh O O D n O n

x
        

 
D ...(113)

For another basis it is required to calculate O(x2 – 1)O–1. The action of this operator on Legendre polynomial Pn gives

O(x2 – 1)O–1Pn = O(x2 – 1)(x2 – 1)n = O(x2 – 1)n+1 = Pn+1

This implies that O(x2 – 1)O–1 acts as raising operator and is equivalent to f 

f  = O(x2 – 1)O–1

This equation and Equation (113) gives

 
2 2

2 1 1 2 2 1 1 21 1 1
1

2 2 2L
x xO D n O O D O n O x O O D O n

x x x
                     

    
D

 1 2
L f Oe O n   D

Or  1 1 2 2
2 LZ Oe O f n n      D ...(114)

For Z3  respect to Equation (113) we have

   
22

1 2 1
3

1
1

2

x
Z Of O O D n x O

x
 

     
 
 

     
2

2 1 1 2 1
3

1
1 1

2
x

Z O x O O D O nO x O
x

  
 
    
 
 

   2
3 1L LZ f n nf f n n            D D

Thus, the set of generators for Lie algebra of Legendre differential operator are as follows

   2 1 2
1 2 3, , 1L L LZ n Z f n Z f n n             D D D ...(115)

4.6. Adjoint Representation of (2, c) Based on Hermite Differential Operator

An appropriate representation of (2, c) algebra presented as (Howe and Eng, 2012):

2 21 1 , ,
2 2 2 2

i ixD D x   h e f ...(116)

The commutation relations of these generators will be unchanged after omitting the imaginary i from e and f yields
a representation of (2, R) with commutation relations of Equation (79):

2 21 1 1 1, ,
2 2 2 2

xD D x   h e f

The adjoint representation of elements of this Lie algebra, can be derived by conjugation with any element of the
group SL(2, R):

  1, (2, )gAd X gXg g SL R 
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The element g could be derived by exponential map of generators of (2, c):

g = etx

assume 21
2

X D  and t = –1, then the adjoint representation elements will read as:

     
2 2 2 2 2 2

2 2 2 2 2 2, ,
D D D D D D

Ad Ad Ad
  

  h e he e e ee f e fe ...(117)

Respect to Equations (81) to (88):

 
2 2

2 21 1 1 1
2 2 2 2

D D

HAd h e xD e
       

 
D ...(118)

 
2 2

2 22 21 1
2 2

D D

Ad e e D e D
    

 

   
2 2

222 21 1
2 2

D D

Ad f e x e x D
     

 

The eigenfunctions of h as Cartan subalgebra of (2, R) are xn. After conjugation with 
2

2
D

e
 , the adjoint

representation’s Cartan subalgebra will be 
1 1
2 2H D  with eigenfunctions or weight vectors 

1
2 neH . The transformation

of xn to 
neH , respect to Equation (39) is given by the relation:

2

2
n

D
n n

e e x gx


 H  2,g SL R

Therefore, the conjugation of generators of algebra (2, R) by an element group g, results in an isomorphic adjoint
algebra that its Cartan subalgebra’s weight vectors (eigenfunctions) could be derived by action  of the same group
element on the eigenfunctions of the original Lie algebra i.e., xn.

If we choose the exponent of generator f as group element  
2

2 2,
x

g e SL R   we have:

   
2 2 2 2

2 2 2 21 1 1
2 2 2

x x x x

Ad h e xD e e xD e
      

 

Due to Example 2.2:

   
2 2 2 2 2 2

2 2 2 2 2 21 1 1 1 1 1
2 2 2 2 2 2

x x x x x x

e xD e e xe e De x D x
    

         
  

This implies that the weight vectors of adjoint algebra should be 
2

2
x

n
nv x e . And can be verified by the action of

x(D – x) on vn.

For 
2

2
tx

g e  we get:

 
2 2 2 2 2 2 2

2 2 2 2 2 2 2
tx tx tx tx tx tx tx

e xDe e xe e xte e D x xt D
      

           
   

And  
2 2

2 2
tx tx

e xDe x D xt


 

Thus, the eigenfunctions of this operator would be 
2

2
tx

n
nv x e .
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4.7. Representation of  (2) and Hermite Differential Operator

Let introduce the basis a1, a2, a3 of  (2) given by

1 2 3

1 0 0 1 0 1
, ,

0 1 1 0 1 0
a a a     
            

...(119)

With commutation relations

[a2, a1] = a3,   [a3, a2] = a1,   [a1, a3] = a2

These commutation relations coincide the complexified algebra of  (2) that is the same as complexified (2, R).

Comparing these basis with the generators of (2, R) presented in Equation (78) reveals the relations

a1 = 2H,   a2 = (X + Y),   a3 = (X – Y) ...(120)

Conjugation of these basis with an element of the group SL(2, R) gives the adjoint representation of (2, R). Let use
the operator introduced in Equation (41) to derive Hermite polynomials from monomials xn. The similarity transformations

1 1 1
1 1 2 2 3 3, ,X Oa O X Oa O X Oa O       ...(121)

   
2 2 2 2 2 2

2 2 2 2 2 2
1 2 32 , ,

D D D D D D

X e He X e X Y e X e X Y e
  

      

Substituting the basis H, X, Y by Equations (78) and (79) gives

     
2 2 2 2 2 2

2 22 2 2 2 2 2
1 2 32 , ,

D D D D D D

X e xD e X e D x D nx e X e D x D nx e
  

        

Thus, by Equations (82) to (87) we get

     1 2 32 ,
2H H H
nX X D x D n X D x D n                

 
D D D ...(122)

The commutation relations of these basis coincide the complexified algebra of  (2) and as well  (3), the algebra
of rotation group in 3-dimensional space.

4.8. General form of Differential-Operator Representations of (2, R)

Theorem 3.1

Denote by B(x) any function of x and choose a set of its ordered integer exponents as linearly independent basis
[1, B(x), B2(x), ..., Bn(x)] , then the set of generators

2

, ,
2

B n D BD D nB
B B B

    
  

h e f ...(123)

Satisfy the commutation relations of (2, R) and yields an isomorphic algebra to it.

Proof:

 , B D D BD D
B B B B

             
h e

2 2
2

2 2

1B DB B D B B B B DD D D
B B B B B B B

       
                  

e

 
2 2 2

,
B B B B BD D nB D nB D D nB
B B B B B

   
                

h f f

By Jacobi identity, these two commutation relations imply the third commutation relation

[e, f] = 2h
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Thus, the above generators are representation of the algebra (2, R) based on an arbitrary linearly independent
basis [1, B(x), B2(x), ..., Bn(x)] of polynomial space.

Assume these basis be transformed to new linearly independent basis Pn by the equation

Pn= OBn(x) ...(124)

Where, O denoted as an operator that introduced in Proposition (2.1 ) and Equation (8) i.e., j jj
O O P  acts on

Bn(x) as the n-th power of B(x). Associated algebra of polynomials Pn can be derived as the similarity transformation or
adjoint representation of (2, R) as defined in examples. Note that the corresponding differential operator DP is derived
by DP = OhO–1. The generators of related associated algebra are

1 1 1
1 2 3, ,OhO OeO OfO    X X X ...(125)

In this setting OBO–1 can be acts as a raising operator for Pn basis

OBO–1Pn
 = OBBn = OBn+1 = Pn+1

Therefore we could apply this operator as raising operator A+

OBO–1 = A+ ...(126)

By this substitution, The general form of generators could be derived

1 1
1 2 2

B n nOhO O D O
B

        
DX P

1 1 1D DOBO O O A O O
B B

    
 

DP

  1 1DA O O
B

 


DP ...(127)

Consequently, respect to Equations (123) and (125) for 2X  we get

  11 1
2

DOeO O O A
B

    


DX P

And for 3X

2
1 1 1 1 1

3
B BOA O O D nB O OBO O DO nOBO
B B

      
       

X

   3 A n A n    D DX P P

Thus, the generators

   1

1 2 3, ,
2
n A A n

     D D DX X XP P P ...(128)

Form an algebra  as a representation of (2, R).

The polynomials Pn are the eigenfunctions of 1X  as weight vectors of Cartan subalgebra of .

As an example, the generators of Hermite algebra can be derived by this formula regarding the raising operator Of
Hermite polynomials i.e., A+ = x – D

1 2H
nX  D

           1 1 1 12
2 H HX A x D x D xD D x D x D D

              D D

= D

  3 HX x D n  D



Manouchehr Amiri / Int.J.Pure&App.Math.Res. 3(1) (2023) 77-109 Page 106 of 109

As it is expected.

The Lie algebra  is the general form of representation of (2, R) whose weight vectors are eigenfunctions of
arbitrary differential operator DP. This implies that for any differential equation with eigenfunction problem, we can
apply the corresponding algebra  and its raising operator to derive its solutions as described below..

4.9. Solutions to Differential Equations by Raising Operator Method

In this section we apply the raising operators of the Lie algebra associated with differential operators defining the
related differential equations to derive its solutions. We start with a known differential equation and first two solutions
i.e., the first two eigenfunctions with the lowest eigenvalues. Then by the definition of raising operator A+ defined by
Equation (126), we derive this operator by restriction to 2 dimension of polynomial space and using the first two terms

of j jj
O P  and Forbenius covariant operator, the entire eigenfunction (solutions) of the differential equation could be

derived.

Example 3.1

As an example, for Laguerre differential equation, if we know the first two monomial i.e., L0 = 1 and L1 = –x + 1 as the
trivial eigenfunctions, respect to Equation (126) the raising operator is

A+ = OBO–1

Where operator O transforms the basis [xn] to Laguerre polynomials Ln.

For Laguerre differential equation by B = x, the raising operator appears as

 1 1
j jj

A OxO O P xO     ...(129)

A+ = (O1P1)xO–1

And acting both side on 1 as the first monomial we get

A+ . 1 = (O1P1)xO–1.1 ...(130)

By O–1 . 1 = 1 and P1x = x and by the O1 = D – 1, this equation yields

A+ . 1 = (D – 1)x

1 = (A+)–1 (D – 1)x

The action of operator (A+)–1 (D – 1) on x is the same as D, then we have the identity

(A+)–1 (D – 1) = D ...(131)

(A+)–1 (D – 1)D–1 = 1

(A+)–1 (1 – D–1) = 1

And this gives

A+ = 1 – D–1 ...(132)

Applying this operator on the first two Laguerre polynomials gives the nth solution

Ln = (A+)n . 1 = (1 – D–1)n . 1 ...(133)

This method can be applied for any differential operator to find its eigenfunctions or ordered solutions.

Example 4.1: For Hermite differential equation to derive O1 due to equation (37) for 2 dimension we have

   1

0 0 0 1 1 1H j jj
O P O P O P 


    D

We assume 0 10, 1    , and   1

j jj
O O P


 

1
1 1H O PO D ...(134)
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Acting both side on first basis x definition for projection operator P1, gives

1
1 1H x O PO x D

1 1H x O Px D

 1H x O xD x D

This equation shows both operators in the equation are equivalent

 1H O xD D ...(135)

Substitution for HD  and action of D–1 on both sides, yields

(xD – D2) D–1 = O1(xD)D–1

x – D = O1x

Or (x – D)x–1 = O1 ...(136)

Respect to A+ = O1BO–1 we get

A+ = (x – D)x–1xO–1

Acting both side on 1 as the first 1 basis

A+ . 1 = (x – D)x–1xO–1 . 1 ...(137)

A+ . 1 = (x – D)x–1x . 1

Thus, we have

A+ = x – D

With raising operator, we derive all Hermits eigenfunctions as solutions to its differential equation

   1 1
n

n n
e A x D    H ...(138)

4.10. Baker-Campbell-Hausdorff Formula Application for Lie Algebras of Differential Operators

A specific version of Baker-Campbell-Hausdorff formula implies that if the commutator relation of a Lie algebra generators
X1, X2 meets the Equation [6]:

[X1, X2] = s X2 ...(139)

With s R , then the BCH formula reduces to

1 2 2
1exp

1
X X

S

sXe e X
e

    
...(140)

Adjoint representation of (2, c) as defined in Equations (116) and (118) represented by generators

       221 1 1 1, ,
2 2 2 2HAd h Ad e D Ad f x D    D

That obey the commutation relations in equations (79)

2 21 1 1,
2 2 2H D D     

D
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Multiplying by –1 yields

2 21 1 1,
2 2 2H D D     

D

Due to (139) and (140) we have

 
21 2

2 exp
2 1

H
D

H
De e

e
  

    

D D

Acting both sides on xn by equation (39) yields

 
21 2

2 exp
2 1

H
D n n

H
De e x x

e
  

    

D D

 
2

exp
2 1

H

n

n
e H

De x
e

  
    

D DH

 
2

exp
2 1n

n n
e H

De x
e

 
    

DH

 
2

exp
2 1n

n
e H

Dn x
e

 
     

DH

This is a new relation that converts xn to 
neH and alternative to the classic relation:

21
2

n

D n
e e x


H

This technique is also applicable to other differential operators such as Laguerre and Legendre differential operators.

5. Conclusion

By introducing a new method of basis transformation of a vector space, which is based on separated transformations
of vector space basis provided by a set of operators that are equivalent to the formal basis transformation, we found a
wide range of applications in differential equations and special polynomials such as Hermite, Laguerre and Legendre
polynomials. The new transformation operators by a linear combination with projection operators, are connected to
formal transformation operator. This method incorporates the Rodrigues formula as a special case and reveals the
symmetries of special polynomials and their associated differential operators by specific representation of with generators
that are defined by these differential operators. Hopefully the separated basis transformation could be applied in the
context of differential equation problems, coordinate transformation in Relativity theories and Hilbert space in quantum
Mechanics.
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