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Abstract

The current letter complements my info-geometric discoveries, especially those provided
from two papers of mine. Fundamentally, the statistical relativization of the Generalized
Brownian Motion Manifold. Following this innovative and unprecedented track of research
will open a plethora of numerous info-geometric investigations to many unexplored
related phenomena in the hope to uncover more new interpretations for the Generalized
Brownian Motion Manifold from an info-geometric perspective.
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The reader is advised to consult (Mageed et al., 2022; Mageed, 2024) as this letter is a continued track of research
for both papers. Potentially, for the introduction and the definitions, the reader can consult (Mageed ef al., 2022;
Mageed, 2024; Mageed and Kouvatsos, 2019, 2021; Mageed ez al., 2023(a); Mageed et al., 2023(b); Mageed and Zhang,
2022; Minyoung et al., 2022; Parr et al., 2020; Ito and Dechant, 2020; Di Giulio and Tonni, 2020; Barbaresco, 2021;
Thiruthummal and Kim, 2022; Tto, 2023; Li, 2022).

1. Introduction

1.1 Information Geometry

The fundamental idea of IG is to apply non-Euclidean geometry tools and techniques to probability theories and
stochastic processes. A manifold is an infinite-dimensional manifold contained in a topological finite-dimensional
Cartesian space, R”. All that is needed to characterise R” is topological space, which can be defined as a collection of
points and their respective neighbourhoods that meet governing axioms for neighbourhoods-points connectors.
Furthermore, IG facilitates the intuitive thinking behind the SMs’ description. It should be noted that while figures can
be displayed in coordinate charts and other visual aids, they should be understood as strictly abstract geometric
figures. One might recognise the enormous significance of IG at a deeper level, as shown by Figure 1.

To our knowledge, the current paper is the first ever to revolutionize classic Brownian Motion Theory (BMT) by
devising the Info-Geometric analysis of (GBM).

* Corresponding author: Ismail A. Mageed, Ph.D., UK President of ISFSEA. E-mail: drismail664@gmail.com

2789-9160/© 2024. Ismail A. Mageed. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


https://orcid.org/0000-0002-3691-0773

Ismail A. Mageed / Int.].Pure&App.Math.Res. 4(1) (2024) 80-98 Page 81 of 98

Figure 1: SM’s Parametrization

In the context of this paper, Ricci curvature measures the deviation of the Riemannian metric (RM) from the standard
Euclidean metric (EM) and how scalar curvature measures the deviation in the volume of a geodesic ball from the
volume of a Euclidean ball of the same radius (c.f., Figure 2).

Geodesics are the analogue of straight lines in Euclidean space and possess many of the same properties as straight
lines. In IG; the Fisher information metric (FIM) measures closeness of the shape between two distribution functions, it
is also proportional to the amount of information that the distribution function contains about the parameter of the
probability density function of the SM.

1.2. Generalized Brownian Motion (GB)
The Tsallis entropy reads:
1= 2X3=1(p(m)?) (L1

where p(n) is the probability of being in the n™ state. As ¢ — 1, H_ reduces to the Boltzmann-Gibbs entropy.

1
(g-1)

In the continuous domain, Hq reads:

1 [ee]
Hq (X) = qu(l - f [fX(X)]q d.X) ...(1.2)
parallel of
latitude great
circle

Figure 2: Geometric Representation of Geodesics on Curved Surfaces
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where f(x) is the probability density function (PDF) of X.
A g-Gaussian PDF reads:

flx) = @eq(—ﬁxz) ~(13)
where,
e,(x)=[1+(1- q)x]l/(l—q) (14)

is called the g-exponential, Cq is a normalization constant, and > 0 is a scale parameter. In the range of extensive values
of the information theoretic parameter ¢, 1 < g < 3, the g-Gaussian distribution is a rescaled version of the Student’s #-

distribution with v = —Z degrees of freedom. The scaling is such that the distributions are the same if
q —_—

v+l 1
2v. 3—gq

q justifies the physical interpretation of Brownian Motion.

. Itis notable to state that the extensive values assigned to the information theoretic parameter

1.3 Random Diffusivity

Consider the stochastic differential equation:

dX(t) = vdt + VDdB(t) (1.5)

where B(f) is a Brownian motion, and D is a random variable that is independent of B(#). Here the stochastic differential
equation is regarded as being conditioned on D. If the probability density function, f,(x), of D is given by:

fo(x) = 6(x — Dy) (1.6)

then D is a constant, and the distribution of the displacement due to diffusion, X(#) — X(0) — v, is a Gaussian (note that
the Gaussian distribution maximizes the Boltzmann-Gibbs entropy). This naturally leads to the question of whether
there are distributions of D that would make the distribution of X(#) — X(0) — v maximize the Tsallis entropy. We will
answer this question in the affirmative and explicitly construct the appropriate distribution for D.

Suppose that:

D ~Dy(V/y) = g(¥) (17)

where V' ~ #%(v) is a chi-squared distribution with vdegrees of freedom and ~ denotes that two random variables have
the same distribution. Then the distribution of X(#) — X(0) — ¢ takes the form

X(0) —vt ~+/DtZ (1.8)

Z
~ /Dot W (19)
v

where Z is a standard normal random variable.

Equation (1.7), implies

d
o) = folg™ @) |97 @)

@ &) ..~G+D)  vDy
2 4 V20
Dy vFx SN2

= v e
2(7+1)F(%) .(1.10)

Figure 3 shows several plots of £, (x).
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Figure 3: Several Plots of f,(x) for Several Combinations of ¢ and D,

Brownian motion is an idealized approximation to actual random dynamics that has been extensively investigated
over a long period time, but possibly still not thoroughly understood. Figure 4 shows a numerical simulation of paths
(bundle) from point a to point b for particles in a constant force field such as weight.

This current study contributes to:
» The provision of the Ricci Tensor of GBM manifold
* Revealing Ricci scalar of GBM manifold

» Obtaining Einstein and Stress Energy tensors which unifies GBM significantly with both general and special
relativity.

The rest of this paper is organised as follows: Section 1 lays out a brief introduction to Information geometry, IG and

Generalized Brownian Motion , GBM. Important IG definitions are provided by section 2. In section 3, Ricci scalar, R

0.4

o 1 2 3 4 5 & 7 8 9 10
Time

Figure 4: Numerical Simulation of Paths from Point a to Point b for Particles in a Constant Force Field Such as
Weight
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and the a~curvature Riemannian Tensor, I1-sectional curvature tensor, 1 are calculated. In section 4, the Ricci Tensor,

Y, the curvature of space time (einestein tensor) 4 and stress energy tensor, Q are calculated. Concluded remarks and
future work are given in section 5.

The following pivotal definitions are taken from (Mageed ez al., 2022; Mageed, 2024; Mageed and Kouvatsos, 2019,
2021; Mageed et al., 2023(a); Mageed et al., 2023(b); Mageed and Zhang, 2022; Mageed, 2023; Minyoung et al., 2022;
Parr et al., 2020; Ito and Dechant, 2020; Di Giulio and Tonni, 2020; Barbaresco, 202 1; Thiruthummal and Kim, 2022; Ito,
2023;Li,2022).

2. Definitions
2.1. Definition

1. Under the @ coordinate system, the a-curvature RiemannianTensors, REJ’;{; are defined by

RG = (5@ = 0 g + (G50l = 10 gk Ls, = 123,0m 2D

where I"i;‘(a) = I"ij(f’;) gSk

2. The a-Ricci curvatures (Ricci Tensors), Ri(]?‘) read:

(@) _ pla) _ji
Ri” = Ry g’ .(2.2)

3. The a-sectional curvatures, KL.E.Z.) reads~:
(a)
@ _ R

vd (gii)(gjj) - (gij)z

JLi=12,...,n ..2.3)

Kl(;‘1)2= K (@) is called o-Gaussian curvature reads:

Ri5z
K@ — 24

4. The Ricci curvature Tensor (RCT) is simply a contraction of the Riemannian Tensor.

Figure 5: (RCT) Describes How Conical Regions in the Manifold Differ in Volume from the Equivalent Conical
Regions in Euclidean Space

plz chk
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2.2. Scalar Curvature (Ricci Scalar), R and Einestein Tensor, §

The scalar curvature (Ricci Scalar), R is the contraction of Ricci Tensor.
_ p@ i - _
R = Rl.j gv,i,j =123, .. ..(2.35)
R = 2K; ..(2.6)
K. defines the Gaussian Curvature and R is two-dimensional

The Ricci scalar R has a meaning very similar to the Gaussian Curvature. If we imagine instead of taking a circle,

taking a generalized n-1 sphere, i.e., the set of all points a geodesic distance € from a given starting point xg . We can

calculate the area of this sphere in flat space, but in a curved space the area will deviate from the one we calculated by
an amount proportional to the curvature. Thus, the Ricci Scalar is:

Acurved (€)

R=1 _6n 1
= ume,, - (2.
ezl =@ @7
Ricci scalar completely captures the curvature of the surface.
Notably,
R 8rngw;;
— p@ _ — Y

4
Clight
where GI./, is the Curvature of Spacetime (Einstein tensor), 2, Ri(j.a) is the Ricci tensor of the spacetime represented by

the metricg, R = Ri(]f")g ¥,i,j =1,2,3, .., 1i,is the Ricci scalar or scalar curvature, & is the universal gravitational

constant, ¢, , is the speed of light, and @, are the components of the stress-energy tensor, @, describing generically the

light
matter-energy distributions in the spacetime.

3. RICCI Scalar, R, a-Curvature Rienmmanian Tensor, I1 and a-Sectional Curvature Tensor, )

3.1. Scalar Curvature (Ricci Scalar), R

Theorem 1.1: The Ricci Scalar, R ofthe GBM Manifold is given by:

@9
V2 ((an )4y (%))

()

w, v, are the digamma and trigamma functions, respectively (Mageed, 2024)
Proof
The Gaussian Curvature K, of GBM Manifold (Mageed, 2024) is given by:
v
201 (3) - 4

K- =
¢ v2((In2 —3) + 1/;(%)) -(3.2)

Following (2.6), it holds that:

o gt 3)-9

¢ = v2((In2 = 3) + 1/)(%)) .(cf,(3.1))

This proves our theorem.
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3.2. The a-Curvature Rienmmanian Tensor, ]

In this section, a-curvature rienmmanian tensor, I is obtained. This unifies GBM manifold with Riemannian geometry,
which will be used to devise the a-sectional curvatures tensor, 1.

Theorem 3.2: The a-Curvature Rienmmanian Tensor, IT of the GBM Manifold is given by:

(a) (@) (a) (a)
1111 1112 1121 1122
(a) (@) (a) (a)
= | R1211 1212 1221 1222 |
(a) (a) (@) (@) (33)
2111 2112 2121 2122 e
\ @) (@) (@) (@)
R2211 2212 2221 2222
where
(a) (a) (a) (a) (a) (@) = pa) (a)
Rl(fn = Rl?lz = R1?21 = Rlzzz = RZgll R2§12 Rzgm - Rzgzz =0 ..(34)

[
- 2 K[(— 0+ 22, .99

—(v+1)< + wz()><w1()+ wz()> (%))(—%ﬁwlé)—ﬁ)

(1 -a) (v, (3)-5) <v—12+ 5V, (%)) o ~(3.5)

8D, Dy |

+

= (L2 (- D) () 1)+ ) -3) (- 2e)
+(3-30Q) () +3n0)

1—a)? v .
((64Ag§ (= )Gz + 592 ()6 =391 G -(36)

d
Where ),(2) = — (1)
R =1 -a)

(_ L e i) -0 (%)»—vnu(wl(%)%wz(%)))
@ (r )

1 1 v
(_;+le1(§)

LA g¥2(3 )

o
4Dk

ol Rk
<
<

(7

-~

Vll’l Vll’l 7

e
|

\_/
U.l S
~=
S~ —
[ ——
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(=) o[-0 -20.@) 1|0 G)-5)-[(o-2m D)o |
s ()30 2) )
a-o 1 v
0¢ (v (%) - 5)° (4_00 - 4_D§>
+(1 - @) (v (%) ~s)

(B 3]s G)

-(38)
R, = —2C %
(. (3)-9)
([(w G)+30: )+ (32 3 3)) 20| 01 () =5) = 0 () -5)
(e bn)oa(n @@ i
-(39)

Ry = — D

CAORD)
((w Q=) i) (0B In@ @) o O @i, (v)>>
[ 0 o 2

~(3.11)

- [—(”“52‘5)]) i@l n -9 SR )+ 20)
|
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[(((-val (5) -3 (%)) Do = 1) (v (5) - 5) - (9 - 2w, (%)) Dy~ ) (% (3)+3 (%))) NCAGE 5)]) (—4170 ¥ 4%)5)

.\ a ; a)( 9— 2;1({11 (E)} B [(_%_}_ %Ebl (‘é)>]>} .(3.12)

It is obtained that the Fisher Information Matrix of GBM Manifold [g,_j_] (Mageed, 2024) is determined by:

Proof

1 1 v 1

—5 gt (E) ~ 4D, 1 ;

lg;]1= 1 v | witha = det([g,]) = w5 (V¢1 (E) - 5) = 0(Mageed, 2024) .(3.13)
\ “m,

Moreover, the reader can check that the a~connections of the GBM manifold (Mageed, 2024) given by

1= 222 G ~(3.14)
M= Ty = Ty =0 315
@ - (18;;‘) 1) =1 -(3.16)
T = %gm -(3.17)
B = S et g = i Gt g 318)
RO =5 = (312253) 50 = 50 = 3211)3 -(3.19)
@ = (gz—Agéﬂ 10) _ _3ZZD3 -(320)
o= 8 A_Dg) Crt g, [0 = Ang Crt 52 .(321)
[0 - 2@ _ (;D_gz) (_%J, %lpl (9) [0 _ 20 _ BAng (_%J, %wl (;)) (3.22)
2@ _ (312;1%) 9 — 2v, (%)) RO = 3211)3 9 — 2vi; (%)) -(323)
It can be verified that:

(@ _ p@ _ p@ _ pla _ pl _ pl@ =p@) =pla _
Rl?ll - Rz‘;zz - qulz - Rl?m - Rli(zz - Rzgn Rzglz Rz;u =0(ct,(34))

[ 2 4 1 2 1 2 1 2
Rgil = [(% (rn(a) + Fll(a)) - a(rzy) + 1«21(01))) (g1 + 921) + ([rz(loqul(a) + IE(zglell(a)] - [rl(lofl)lhw) + 11(271)1121(0()])]

_ a 21— a)v 1 1 v 21—a) 1 1 v i (1-a 21—-a) 1 1 v 1 1 v
= E(W(V—ﬂ' §¢z(5))+m(v—z+ g2 _B_DO(E'ZADS + (Vllﬁ (%)_ 5) <—;+ g (E)>) (=5+30:3)

1
_4_DO)+

1-a) 1-a) 1 1 v 1l-a) 1 1 v 1-a)
405 (vyy (3)-5) (ﬁ *a¥ (5))} " Gt g @y, (v (3) - 5)]>}
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2(1—a)

o )-s)

KK ) (YRR (AR N S )| S

RCERICACEDICES TAt)

B 4_00) + 8D,

(Di _ 1)]‘ (c.f,(3.5))
0
« Dy —v)1—-a) 1 vy Vv v v 1 v v 1 1 v vy OV v
R = (—GD;@% OB 5)2> (o) (k) +30:0)) + (1. Q) -9 - 50:0)) + (- 10 ) (B + 50 ))
W=Dz +5%2 (GG — 191 G(CE, (B.6)
Ry = (0255 + L5 = 0, (1 + LX) (gur + 92) + (IH9 05" + LS “1 = RS9 05 + R5559)]

f
=(1- a)|

( 1 Ll (3) = vibo (3= Dol (v (5) = 5) = 100 = 2w (5)) — vol (w1 (3) + 50 (%)))
2(wi (3)-5)02 25§ (w1 (3)-5)

1.1
(o9 )(1 )ﬂ(_ﬁﬂ’l@))] vz + gWa(y)

|| o @9 | el oo

Engaging the same procedure, the remaining tensorial components will follow.

Theorem 3.3: The a-Sectional Curvature Tensor, 1 of the GBM Manifold reads

(@) (a) (a) ()
1111 1112 1121 1122
() (a) (a) (@)
9= 1211 1212 1221 1222
a a a a
(o) (@) (o) () .(323)
2111 2112 2121 2122
(o) (a) (o) (@)
KZZII 2212 2221 2222
where
(a) (a) (a) ) ) = ) = (@) (a)
Kl?ll = Kl?lz = K1;121 = Kl(fZZ = KZ(‘Zzll Kz(glz Kz;n = Kzgzz =0 -(3.24)

K, % K[(;ﬁng 0 C0, ))] (01 3)-5) -0+ 0+ 1. 0)) (1 Q)+ 30: )

(325

aDf 8D, @~ 1)]|

i @-9\) 11 v 1 G-OenE-5)(Fr )
S Dy (—;4‘11/11(5)—4—[)0)"'
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- (00 () (9 )39+ - (5 (- ) (1 D3 )

v, (3) - 5)°
=G+ 592 GD+G =9 (31 +(3.26)

16D2(1 — )

(@) —
1 (3) - 5

1221 ~

| 1 1 120 () = (5 - 2o (s (3) - 5) — (0 = 2 G vl (0 () +5: () 1 1
I[ 2 (v (%)—5)05_2_175( (e (3) - 5) (—5+706)
1,1
BESN L) ( |[<‘V + 3z ] lv(v% + év 11’2(2))]\ o
o 0 \[ (vz/;l (2) J 2 (wp1 (2 /

B-@) 1 ([0 @)-20. @) 20 1| (o1 B -5) | (- 2 ) 20—+
T (1) +50.6) )
_16d-a) o
(0, (-5 ()

- (o ()9

[EE i @l o= G)

(@) _
Kipon =

-(328)

@ _ 32D¢(1—a)

=t (O 5+ (o 3o ) tow -

1 1 v

e I C ) e s

. el [CEETC) (G TEE |

- G e Q) em @9l 0 B 0050 ) )

. <(mp1 3)-5) ez oo (52 + g ()| -1 -ov (5 + g (%))])] -(330)

16D2(a — 1)

(s (3)-5)

(@ _
K2(1121 =
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| (wl Q=)0 )0 G 10003 a0 @) o)« o2 @@ i@, )
[ 2D2 2D, 2

, ]
[<”¢1§;§5>]>[3+1w1<;> ECACE )%ZD?(vwz()nwl())j e

i -2 -3 @) (1G9 - (-2 @) (G50 0)

(v (3) -
o () - 5)]> (_ 4%0 +4LD§> +(1;a)< 9—22151 (%)l _ [<_%+ B (%)>]>l .(332)

Proof
Engaging

(@)

Ri'i' ..
K5 = %, i,j=12(cf,23)

and (3.4)-(3.12), the proofs are immediate.

4. Ricci Curvature Tensor, Y, Curvature of Spacetime (Einestein Tensor), £ and Stress Energy
Tensor, Q of GBM Manifold

4.1. Ricci, Einstein, and Stress Energy Tensors

Theorem 4.1: The Ricci Tensor corresponding to the curvature parameter =0, Y of the GBM manifold is determined
by:

(0) (0)
_ (Ru Ry, ) @1)
- (0) (0) ees .
R21 R22
where

4

RiY = W [(4¢1 (%) 4D, ;) k Do (v (3) - 5)2 ’ 0§ (1 (3) - 5)

11

(D E >< Ty @@ (1 Q-9) 2w 6)

1 1 1% v % 1% 4((V_D£) (iz-l_%lpz (%) +1_%¢1 (%))l .
(i @)(n @3 (9)) T R )9 J(Mag“°d’ R
(0) We have

R = RSy g i k1 =123, ....,n(cf,(22))
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R(0)=[ o _L(K—Zwl(%)—vwz(%))—Dol(vwl(%)—S)—[(9—2%(%)»—vDol(wl(%%%wz(%)) TP
P\ 2w (3)-s)os 28 (v (3)-3) v AT
11 (—%+ i (%)) v+ ga(y)
-2 a7 v e
| (n@-9) | 2 @-9) )]

2
1,1, v \
4D, 16(—5 +z¥1()

)9 | o @-s) (5-757)

(43)

(4050 (+ 1)) -5)-w -9

S M) (AU B e

LB e @)oo o))

2D§ 2D,

W%*mhMQ;&W@ﬂ%wwwwﬂ 49
]

Proof

Itis proven (Mageed, 2024) that the Inverse of Fisher Information Matrix, IFIM of GBM manifold is given by:
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(L L
g,1= % ‘“1) 6 1 4f ¢, |witha= Tng (vips (%) - 5) (4.6)
i, v t7hi )
We have by (2.2),
R = RO+ Ao+ K%+ R -a7)

. v 120 (3) =it (3) = 2ol (v (5) = 5) = 109 = 2w (30— vol (1 (5) + 5 0 (%)))( L
- RS

‘K‘z(wl G)-s)oi %' CAOED)

1,1
_i)+L <_?+ 7% (%))Lrv(v%+%¢z(%))] l 4D,
4D,” * 4D} l(Vl/h(%)_S)J lz(vll)1(%)—5) J(Vl,l)l (%)—5)
o
16(—5 +39:3)

%

(0.3)-5) (w5~ 757)

(cf,(4.3)

Moreover,

©) _ pO) 11 ) 12 ©) 21 ) 22
Ry = Ry119 + Ry,9° + Ry 9™ + Rying -(4.8)

R(O) 11:8—1/3
M () -9)

(@3- 0)+ (G 3@ 4. B9 0 -9

1,1 v 1
(=ytz¥1(z) —2p0)
+ <_%+ %1.01 G)) Do] (ll)l (%) + %Ebz (%)))) v 4 ;0(2) 200

+M 1ty (%)) 0o -2 L) ))])] et @49
64D? vz ' g7 i\2/ )"0 v 471\2
Rgg) = Rg(l))mg“ + Rg)zzglz + Rg(z))mgn + Rgg)zzgzz ~(49)

— ) 11 0) 12
= Ry219 + Ryng

(((—m ()-39:0)20- (o (5)5) - (3-20,G) ) - (s )+ . 3))

2 L
(i (3)-5)
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o (g)-s)]>(-ﬁ+%%>+§<[%]-[(-§+ L, (;))]N_ZV

([0 ) =5)+vem () 450 (5D, s () =5) (203 3) + v (3)) + 0= 2w (3) (12 () + 52 (5))

1 N
[\\ 2D 2D, ( — v (E)>/

I
|

Theorem 4.2: The Curvature of Spacetime (Einstein tensor), § and the Stress Energy Tensor, QO of GBM manifold
corresponding to the curvature parameter, o= 0 are determined by:

0) (0) (0) (0)

_ (G Gp Q _ [ @1 @y

goa:O - G(o) G(o) yREa=0 — 0) ) (410)
21 22 Wy Wy

#%2*)&&@>Mwm©wﬁﬁw®ﬂmmk“w>

where

4 1 v 1 1
W @ @@ w3

A 0 6 (0 ) )

Q) ) B D
@) 1

2 ((lnz -3) +¢(%)) =*ah (E T

1 (G2 (3) = (2D~ ol (0 (3) =)~ 100 = v ()0 ol (v (5) + 5 (%)))

Gfg)Kz(wm BErEC XSRS

vz + g

)
2n -9 )|

=g

\ 2
4D, 16(—%,+%w1(%)

CACED N RTNGES) (- 757)

(3 @) o2 &)
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20 1 o

+v2 ((an -3)+y (%)) 4D, Ciight
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Proof

Engaging the obtained results from theorems 3.1 and 4.1 together with the derivation noted in (4.13) and fully obtained
indetail (Mageed, 2024), the proofs are immediate.

The following theorem is significant as it explains that based on Equation (2.8), which links Ricci scalar, Ricci
curvature tensor, the Einsteinnian curvature spacetime tensor and the stress energy tensor,

o R 8ngw;;
Gy = Rl_(]_ ) _ S5 =3 J (c.f,(2.8)
Clight
If R =0,then
« 8ngw;;
Gy = R = 2% (4.15)
Clight

(2.15) translates as Ricci scalar approaches zero, both Einesteinnian curvature spacetime and Ricci Tensors are equal.

Cﬁght
8ng
volumes are invariant. But note that these are volumes of open sets in the manifold. So, if the underlying manifold is a

Also,the Stress Energy tensor is proportional to both with a factor of . Moreover, a value of R = (0 means that
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spacetime, the volumes are not spatial volumes, but rather have some dimension in time as well. A value of R =0, just
means that some dimensions may stretch, and others may compress, but they do in such a way so that the overall
volume does not change. (You can make an analogy with solid mechanics and the Poisson ratio). The Ricci tensor tells
you how volumes change, and a Ricci scalar of zero means that volumes do not change. The other physical interpretation
of a zero Ricci scalar is that in this important special case, GBM manifold will be a flat manifold. Furthermore, it translates
to vacuum spacetimes.

4.2. Zeros of Ricci Scalar of GBM Manifold
Theorem 2.3: The zeros of Ricci scalar, R (c.f., (1.1)) are characterized by the path equation:
r (%) = 0, (@11/4)(%)@‘”, provided that §, and 6, are any two non-zero real constants. ..(4.16)

Proof

Let R = 0.Then,it follows that

v (3) = 401 1 (3) = 4 (417)

1%

Define x = %.This transforms (4.17) to

d 4d
dl- (in ()] = Tx (4.18)

Integration solves (2.18) to

d
[ (nr )| = 4tnx + 0o, = ingp,x%) .(4.19)
Therefore,

d(Inl'(x)) = In(p,x*)dx, which that the closed form solution is determined by:

Inl'(x) = [ n(p1x")dx = Ing, [ dx + 4 Inxdx = xIng, + 4xlnx — 4x + In@, ..(4.20)
Clearly, it follows that

e (xn @1 +4xinx —4x+ingz) — @29_4X(Pi((x4)x — @2€_4X ((p1x4)x (421)

v . .
x=3 re-writes (4.21) to the compact form solution
r (%) =0, (@11;4)(%)3—‘/, provided that 6, and @, are any two non -zero real constants, 6; = (1'0—; (c.f., (4.16))

The following theorem is the condition for which Ricci scalar of (1.1) is infinite A value of R — o, just means that
s dimensions are stretching significantly large enough so that the overall volume changes.

4.3. Infinite Values of Ricci Scalar, R of GBM Manifold
Theorem 2.4: The infinite values of Ricci scalar, R (c.f., (1.1)) are satisfied by the paths:
v=0orr (;) = 0;eCG~"2v, provided that g, is any arbitrary non-zero real constant. .(4.22)

Proof

Let R — . Then, it follows that

V2 <(ln2 —3)+y (;)) =0 (423)

(4.23) holds if either:
v=0(c.f,,(4.22))
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or
((an —3) 4+ (%)) =0 (4.24)

Define y = % This transforms (4.24) to

[;—x(lnl"(x))] = 23 -1In2) -(4.25)
Integration solves (4.25) to

Inl(x) = 2(3—In2)x+In0B; ..(4.26)
Therefore,

r(x) — @362(3—ln2)x — 036(3—ln2)v (C.f., (422))

5. Conclusion and Future Work

The current letter presents a breakthrough in revealing statistical info-geometric relativization of the GBM manifold.
New avenues of future work involve the development of statistical info-geometric relativization of stable queueing
systems and time-dependent queueing systems. This development will revolutionize classical queueing theory by
analyzing as well as visualizing the stability dynamics of both stable and time dependent queueing systems with the
help of the statistical info-geometric relativization techniques.
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