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Abstract
A novel subspace method is proposed to improve dimension reduction for
pattern classification. As a dimension reduction (DR) technique, information-
to-noise estimators (INEs) project feature values on class-specific noise
eigenvectors derived from the correlation matrix for each class. Parameter
and ablation studies indicate that INEs offer improved stability for classification
performance. Class prediction results indicate that use of INEs for 14 datasets
resulted in a 15.5% increase in accuracy from 84.5% to 97.6% compared with
other DR methods. Use of INEs prior to classification analysis also outperformed
typical feature selection prior to classification with an 18.3% improvement in
mean accuracy (0.97 vs. 0.82). In addition, the standard deviation of accuracy
over all datasets was 0.14-0.16 for other DR methods and 0.078 for INE,
suggesting a ~48% decrease. We advocate intraclass noise eigenspace projection
for pattern classification as an alternative to input feature selection or DR with
other methods prior to classification analysis. In conclusion, use of INEs based
on the class-specific noise subspace can greatly improve classification
performance and model parsimony without use of input feature selection.
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1. Introduction

1.1. Basic Model - Interclass PCA

 Data analysts often face the “curse of dimensionality,” whereby a dataset’s number of features greatly exceed
the number of objects (p >> n). For this reason, unsupervised class discovery of objects commonly involves
dimension reduction (DR) to gain insight on patterns or clusters of objects. Interclass principal component
analysis (PCA) is one of the most popular classical methods used for reducing the dimensions of a dataset
(Pearson, 1901). At the heart of PCA lies eigendecomposition, a linear matrix-based technique for extracting
eigenvalues and eigenvectors from a feature-by-feature square non-symmetric or square symmetric matrix,
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which is typically based on covariance or correlation (Jolliffe, 1992). A p × p correlation matrix R has p
eigenvalues 1, 2, …, p and accompanying nonzero eigenvectors e1, e2, …, ep. Each j (j = 1, 2, …, p) and its
corresponding ej satisfy

𝐑𝐞𝑗 = 𝜆𝑗 𝐞𝑗 ...(1)

By the Principal Axis Theorem, R can be expressed as

𝐑 = 

𝑝

𝑗=1

𝜆𝑗𝐞𝑗𝐞𝑗
⊤

 = 𝐄𝚲𝐄⊤,

 ...(2)

where E is the matrix of orthogonal eigenvectors and 𝚲  is the diagonal matrix of eigenvalues with zero off-
diagonals. In expanded form, we get
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Some useful properties of eigenvalues from R are as follows:

1. The sum of eigenvalues equals the number of dimensions of R: p = j;

2. The cumulative variance of X explained by the kth eigenvalue of R when 1 > 2 > > k > ... > p is

   k

jk j
Var p X ;

3. The determinant |R| is j;

4. The inverse R-1 is E𝚲 -1ET, where 𝚲 -1 = diag{1/1, 1/2, …, 1/p};

5. The square root matrix R1/2 is E𝚲 1/2ET, where 𝚲 1/2 =  1 2diag , , , p   .

Properties 1 and 2 listed above only apply to a correlation matrix, and not the covariance matrix or other
positive definite square symmetric matrices, while properties 3-5 apply to all square symmetric matrices.

Using PCA for DR requires estimation of the principal component (PC) scores. The non-standardized PC
scores for R are based on the relationship

𝑓𝑖𝑘 = ൬
𝑥𝑖1 − 𝑥ഥ1

𝑠1
൰ 𝑒ො𝑘1 + ⋯ + ቆ

𝑥𝑖𝑝 − 𝑥ഥ𝑝

𝑠𝑝
ቇ 𝑒ො𝑘𝑝

 = 𝑧𝑖1𝑒ො𝑘1 + 𝑧𝑖2𝑒ො𝑘2 + ⋯ + 𝑧𝑖𝑝𝑒ො𝑘𝑝

 = 𝐳𝑖
⊤𝐞ෝ𝑘,

   

 
...(4)

where i represents the ith object (i = 1, 2, …, n). In matrix notation, the matrix of non-standardized PC scores is

𝐅
𝑛×𝑝

= 𝐙
𝑛×𝑝

𝐄
𝑝×𝑝

, ...(5)

and the standardized PC scores are

𝐅
𝑛×𝑝

= 𝐙
𝑛×𝑝

𝐄
𝑝×𝑝

𝚲
𝑝×𝑝

-1/2
...(6)
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Thus, for an input n × p data matrix X, there will be an n × p matrix 𝐅 . For each object there will be p PC

scores in each row of 𝐅 , and in each column of 𝐅 , there will be n PC scores for all of the objects. Some important
properties of PC score column vectors is that they are orthogonal with zero correlation

𝐟1 ⊥ 𝐟2 ⊥ ⋯ ⊥ 𝐟𝑝, ...(7)

and are distributed standard normal, 𝒩(0,1).

Figure 1 shows 3D plots of non-standardized PC scores from (5) for three sets of 6 features with various
levels of correlation and the corresponding heat maps representing R. When all 6 features are highly correlated,
the major eigenvalue of R is 1 = 6 and the 1st PC score vector forms a line in 3D space, called content. When
there are two sets of 3 highly correlated features, the eigenvalues of R are 1 = 3.05 and 2 = 2.95, and the two PC
vectors form an ellipse or disc in 3D space. For three sets of 2 highly correlated features, the eigenvalues of R
are 1 = 2.09, 2 = 2, and 3 = 1.9, and the 3 PC vectors form a sphere. With near-zero correlation in the case of
random noise, all eigenvalues will be unity when 𝑛 → ∞. . Altogether, it is clear that eigenvalues represent the
number of sets of features which are highly correlated together.

Figure 1: 3D Plots of Non-Standardized PC Scores from (5) and Corresponding Correlation Matrix Heat Maps
for Three Sets of 6 Features

Note: (a) One Set of 6 Highly Correlated Features, (b) two sets of 3 highly correlated features, (c) three sets of 2 highly
correlated features, and (d) 6 features having random 𝒩(0,1) distributions.
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1.2. Advantages of Interclass PCA

Dimension reduction is known to improve model parsimony, which is sought when attempting to attain
similar results through the use of fewer dimensions. In addition to DR, PCA also performs decorrelation and
noise reduction. In the presence of correlated features, decorrelation can be an important pre-filtering step
before clamping features to a feed-forward back-propagation artificial neural network (ANN), because ANNs
can “waste time” learning about between-feature correlation (Peterson and Coleman, 2006). Overfitting is
another source of bias related to use of an overly complex model that learns too much about the training data,
especially the noise (Geman et al., 1992). For this reason, PCA is typically employed as a feature transformation
step in workflows involving high-dimensional class prediction.

1.3. Disadvantages of Interclass PCA

Although PCA is useful for DR, decorrelation, and noise removal, there are several disadvantages. Firstly,
PCA is considered a linear operation, mostly because of the nature of the matrix operations. Since PC scores
are distributed 𝒩(0,1), they remove skewness and kurtosis among feature distributions, however, at the cost
of overlaying a normality assumption on the problem being tackled. Many man-made and naturally-occurring
feature distributions are not Gaussian or skew-normal, but rather can be triangular, Levy-stable, or multimodal,
non-linear, and discontinuous in the limit. Eigendecomposition collapses a larger number of correlated features
down to a reasonable set of uncorrelated dimensions that describe a majority of the variance in X. The signal
space of R only represents correlation or multicollinearity, so if multicollinearity is invariant across class
labels, the interclass signal will not vary, rendering interclass PCA and PC score generation noninformative
for pattern classification.

1.4. Intraclass PCA

When there are class differences between feature correlation, intraclass PCA can be employed to generate PC
scores that are specific to each class, as a means of augmenting informativeness of class labels. The choice of
using the signal or noise subspace of R depends on the transform applied to the eigenvectors. If the signal is the
target, then signal eigenvectors are used for generating PC scores, whereas when the noise subspace is of
interest, the inverse of noise eigenvector values can be exploited. In the noise space, the length of eigenvectors,

j , is smaller and therefore their inverse is larger—which can boost the sensitivity for detecting class differences.
In terms of angular rotation, the noise subspace often spans a larger volume since there are typically more
eigenvalues (eigenvectors) in the noise space when compared to the signal space. Unfortunately, the awareness
and popularity of intraclass PCA for noise subspace methods is swamped by the popularity of interclass PCA,
mostly because data analysts and statisticians are not formally trained on noise eigenspace methods.

1.5. Related Work

A review of the state-of-the-art in pattern classification and signal-to-noise ratios (SNRs) indicates that the
majority of previous work has been done in the time-frequency domain. For example, Cabrera et al. (2018)
studied classification of electroencephalograms (EEG) in the high-beta (19-30 Hz) and gamma (30-45 Hz)
brainwave bands. Signal demodulation effects on classification have also been investigated using deep learning
under varying noise conditions (An and Lee, 2023). Alarabi and Alkishriwo (2021) employed a neural network
for classifying several digital modulation schemes such as BPSK, QPSK, 16QAM and 64QAM. Radiofrequency
fingerprinting is another area of research where effects of receiver SNR on classification results have been
investigated (Rehman et al., 2012). Sahu and Mishra (2011) and Mishra and Sahu (2011) focused on SNRs for
informative gene selection and gene expression classification; however, the SNR was merely defined as (1 –
2)/(1 + 2), which closely resembles a t-statistic but does not involve noise subspace methods based on
eigendecomposition.

Signal classification based on noise subspace methods have focused on speech recognition (Tan et al.,
2007), hyperspectral images for remote sensing (Tu et al., 1998), and vector classification using signal subspace
matching (Wax and Adler, 2023). Various matrix whitening approaches have been developed, including the
mutual subspace method (Maeda and Watanabe, 1985) and variants such as the multiple pseudo-whitened
mutual subspace method (Yamaguchi and Fukui, 2022). These methods employ the (Jiang et al., 2008) method
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for eigendecomposition of the dispersion matrix into a reliable, noise, and null subspace via whitening, and
simultaneously extract informative features from high-dimensional data vectors with hundreds to thousands
of features—which are typical for image processing.

Subspace methods have also been developed for spectral density estimation in the time-frequency domain.
Use of the noise eigenspace of a covariance matrix was first introduced by Pisarenko for frequency estimation
during harmonic decomposition of a noisy signal during earthquake identification (Pisarenko, 1973). The
peak location in the frequency estimation function (pseudo-spectrum) of the Pisarenko Harmonic
Decomposition (PHD) was functionally composed as

  2

min

1ˆ j
PHD

T
P e  

e V , ...(8)

where Vmin is the noise eigenvector and 𝑒 = [1 𝑒𝑗𝜔 𝑒𝑗2𝜔 ⋯ 𝑒𝑗 (𝑀−1)𝜔 ]𝑇. A limitation of PHD is
that it is one-dimensional, since only a single noise eigenvector is used. Later, Schmidt (1986) introduced a
multisignal classification (M.U.S.I.C) method, which was based on the full matrix of noise eigenvectors when
there are p signal eigenvectors, given as

 
   

1
M̂U T T

n n

P  
a E E a  , ...(9)

where a() is a steering vector and En is the matrix of noise eigenvectors from the covariance matrix. The
introduction of the full matrix of noise eigenvectors, En, for peak detection enabled the use of “root” MUSIC for
processing signal data from an array of sensors to determine parameters of multiple wavefronts arriving at an
antenna array from measurements made on the signals received at the array elements. Root MUSIC has been
shown to increase radar resolution to identify the number of incident wavefronts present, directions of arrival
or emitter locations, strength and cross correlations among the incident waveforms, and noise-interference
strength. Root MUSIC, otherwise known as “beam forming”, has been widely adapted in civilian and military
applications involving radar detection of aircraft, and its performance is continually being improved (Kim et
al., 2002; Mohammed and Noori, 2014; Ozcetin, 2018). What is clear from most studies cited above is that
previous research has eluded systematic investigation of noise eigenspace methods for general pattern
recognition involving low-dimensional datasets.

The structure of the remainder of this paper is to introduce the datasets, provide a brief description of DR
methods employed prior to classification runs, introduce information-to-noise estimators (INEs), and then
describe the classification methods employed. Results are then compared between INEs and the various DR
methods considered.

The contributions of this paper are:

• To introduce an information-to-noise estimator (INE) that exploits the noise eigenspace from intraclass
eigendecomposition;

• A parameter study to understand the effect of using an arbitrary number of dimensions, as well as various
dimension(feature) selection methods on class prediction accuracy;

• Ablation studies to determine the effects of annihilation of dimension values via random shuffling and
Gaussian smearing on class prediction accuracy; and

• Compare class prediction results between PCA and other DR techniques with results based on INEs.

2. Methods

2.1. Datasets

The majority of datasets were obtained from the Univ. of California-Irvine-Machine Learning Repository
(Kelly et al., 2024). The optchar dataset is based on the first 500 records of the test set for the MNIST optical
character recognition data base (Deng, 2012). Table 1 lists the datasets and their number of classes, objects,
features, and signal and noise eigenvectors identified using interclass PCA. Features with missing values
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were dropped from the original datasets, since imputation of missing data was not a focus of this investigation.
In the MNIST dataset, we also dropped features that were invariant.

2.2. Dimension Reduction (DR) Methods

2.2.1. DR Based on Interclass PCA

All computational procedures were performed using methods in the Explorer CE package (NXG Logic LLC,

Method Acronym Ref. 

All PC scores from PCA (𝜆1, 𝜆2, … , 𝜆𝑝) PCA Pearson (1901) 

Signal PC scores from PCA PCASIG Pearson (1901) 

Crisp K-means cluster CKM Lloyd (1957) 

Unsupervised particle swarm optimization UPSO Kennedy and Eberhart (1995) 

Kernel Gaussian radial basis function PCA KGPCA Schölkopf and Smola (1998) 

Diffusion maps DM Lafon and Lee (2006) 

Unsupervised artificial neural networks UANN Hornik et al. (1989) 

Laplacian eigenmaps LEM Belkin and Niyogi (2004) 

Sammon mapping SAMM Sammon (1969) 

Non-negative matrix factorization NMF Lee and Seung (1999) 

Classic multidimensional scaling CMDS Torgerson (1952) 

Typical selection of normalized input features NORM  

Information-to-noise Estimators INE (this study, Eq. 12) 

Table 2: Dimension Reduction Methods Employed Prior to Class Prediction

Table 1: Datasets Employed for DR and Classification Analysis. #Signal  and #Noise  Represent the
Number of Signal and Noise Eigenvectors Identified in the Feature Correlation Matrix

Dataset 
Classes Objects Features #Signal 𝝀 #Noise 𝝀 

𝛀 𝒏 𝒑 (𝒑 −𝒎𝑷𝑪) 𝒎𝑷𝑪 

Breastca 2 277 6 1 8 

Cancer 2 699 9 1 8 

Dermatology 6 366 34 4 30 

Glass 6 214 9 2 7 

Heart Disease 5 297 13 4 9 

Hepatitis 2 80 19 1 18 

Ionosphere 2 351 32 5 27 

Iris 3 150 4 1 3 

Liver 2 345 6 1 5 

Optchar 10 500 56 9 47 

Pima 2 768 8 2 6 

Soybean 15 266 35 4 31 

Thyroid Recur 2 383 16 5 11 

Wine 3 178 13 2 11 
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2024). The number of signal eigenvectors of R for an entire dataset with n objects and p features was based on
the Marcenko-Pastur Law (Marcenko and Pastur, 1967), which states that eigenvectors in the signal space
will be associated with eigenvalues j above a cutoff value of

𝜆+ = ቆ1 + ට
𝑝

𝑛
ቇ

2

, ...(10)

that is, j > +. Analogously, all noise eigenvectors are associated with eigenvalues j < +. The number of
eigenvalues in the noise space of each dataset was determined with the relationship

𝑚𝑃𝐶 = 

𝑝

𝑗=1

𝐼(𝜆𝑗 ≤ 𝜆+), ...(11)

and the number of signal eigenvalues was then equal to p – mPC. The far-right column in Table 1, “Noise ,”
reveals the number mPC of noise eigenvectors found in each dataset. The result of calculations described above
was an n × (p – mPC) F matrix of non-standardized signal PC scores from (5) for each dataset. Two approaches
were employed when using interclass PCA before classification analysis: “PCA” and “PCASIG.” The PCA
method employed selection of PCs (dimensions) using the OAA-MW method (see Section 2.6.2), whereas the
PCASIG method employed only the p – mPC signal PCs prior to classification.

2.2.2. DR Based on Intraclass Eigenanalysis - Proposed Information-to-Noise Estimators (INEs)

Although beam forming is principally used to find the root of a polynomial in the time-frequency domain,
exploiting the noise eigenspace can yield remarkable insights into pattern classification. By analagous
borrowing from denominator terms in (8) and (9), we introduce an information-to-noise (INE) estimator for
each noise eigenvector in the form

 
1

ˆ ˆ
p

ij
INE i ik i

j kj

x
P P

e




  x x , ...(12)

where xij is the normalized feature value for the ith object in class  ( = 1, 2, …, ), and |𝑒𝑘𝑗
𝜔 | is the absolute

value of the jth element (j = 1, 2, …, p) of the kth noise eigenvector (k = 1, 2, …, m) when eigenanalysis is run on
the feature correlation matrix from objects in class . To guard against inflation of the estimator from miniscule
eigenvector values, the estimator is rescaled using

𝑃𝑖𝑘 = log10(𝑃𝑖𝑘 + 1) ...(13)

The full size matrix P of INEs with dimensions n × m derived from the  classes is then used to replace the
data matrix X used in classification analysis. INEs provide a novel method for DR of the data matrix prior to
class prediction.

For each dataset, we first dropped features having invariant within-class values, since this would result in
j = 0, leading to null correlation coefficients with other features and a singular R for the given class. Next, we
calculated the eigenvalue noise cutoff for class  by using

𝜆𝜔
+ = ቌ1 + ඨ

𝑝

𝑛𝜔
ቍ

2

, ...(14)

and then determined the number of noise eigenvalues in class  using

 𝑚𝜔 = 

𝑝

𝑗=1

𝐼(𝜆𝑗𝜔 ≤ 𝜆𝜔
+), ...(15)

where j is an eigenvalue from eigendecomposition of the correlation matrix based only on the n objects in
class . We then used (12), which resulted in an n × m matrix P of class-specific INEs. The minimum
number of noise eigenvectors over all  classes was then determined using
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𝑚𝐼𝑁𝐸 = 𝑎𝑟𝑔𝑚𝑖𝑛𝜔∈Ω𝑚𝜔. ...(16)

The class-specific matrices, P, were then stacked to create the full n × mINE P matrix of INEs for the entire
dataset.

2.2.3. DR Methods Based on Manifold Learning

DR can also be performed using manifold learning methods. Manifold learning attempts to retrieve the
original structure of a high-dimensional dataset and can identify a surprisingly small number of dimensions
to describe characteristics of the original data structure. A manifold is defined as the image of a low-dimensional
space that is linearly or non-linearly embedded in a high-dimensional domain. PCA is a linear manifold
learning method, since it maps a high-dimensional set of features to a low-dimensional space using the
minimal number of orthogonal dimensions required to describe the majority of the variance in the high-
dimensional space. Non-linear manifold learning (NLML) can tackle problems when the manifold is not
linearly embedded in the original domain. Data integration of high-dimensional datasets can be accelerated
by using NLML, since patterns in the original data are compacted and preserved so that they can be exploited
for association mapping between datasets.

Recent implementations of NLML include kernel PCA (Schölkopf and Smola, 1998), diffusion maps (Lafon
and Lee, 2006), and Laplacian eigenmaps (Belkin and Niyogi, 2004). The basic assumption of these algorithms
is that the high-dimensional data lies on a low-dimensional manifold embedded in a high-dimensional
structure. Table 2 lists the DR methods employed prior to class prediction analysis.

2.3. Classifiers

The following classifiers were employed (Peterson, 2013): K-nearest neighbor (KNN), naive Bayes classifier
(NBC), linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), linear regression (LREG),
polytomous logistic regression (PLOG), learning vector quantization (LVQ1), kernel regression (KREG),
supervised neural gas (SNG), supervised artificial neural network (SANN), gradient ascent support vector
machines (SVM), and constricted particle swarm optimization (SPSO). For KNN, k was set equal to the number
of classes and was padded with 1 if k was even, in order to prevent ties. A Gaussian RBF was used for the
kernel trick in KREG and SVM. For the SANN, one hidden layer was used with the number of input and
hidden nodes set equal to the number of dimensions used. Batch learning, 500 epochs, and the tanh activation
function was used at hidden nodes, and softmax was used on the output-side. Network error was based on
MSE and the number of output nodes for the SANN was equal to the number of classes. A grid search was
used to determine the best learning rate for the SANN, and momentum was set to 0.7. Weight decay was not
used. A grid search was also employed for the SVM classifier, to determine the best estimates for C and . The
SPSO classifier used 30 particles, and 150 generations. The number of training iterations for LVQ1 and SNG
was set to 50. Ensemble classifier fusion was also performed based on majority votes (EMV) and weighted
majority votes (EWMV).

2.4. Cross-Validation

10-fold cross-validation was used during class prediction whereby objects were randomly assigned to folds
𝒟1, 𝒟2, … , 𝒟10 .During the first fold, training data were based on folds 𝒟1, 𝒟2, … , 𝒟9, while objects in
fold 𝒟10 were used for testing. This was repeated until class prediction was performed for objects in each of
the test folds. Classification accuracy was based on dividing the total number of objects in the diagonal of the
confusion matrix, for which rows represented true class and columns represented predicted class, by the total
number of test objects, which was always equal to n. Feature normalization was used during all 10-fold CV
classification runs, where min(x) and max(x) from feature values of training objects were used for transforming
feature values of test objects. Test feature values below min(x) from training objects were set to zero, while test
feature values greater than max(x) were set to unity.

2.5. Classification Runs - All Classifiers vs. Diverse Classifiers

We ran two types of classification runs: one using only two DR methods (PCA and INE) and all classifiers,
and the other using all DR methods and only the most diverse classifiers (NBC, LVQ1, SNG). The first method
enables evaluation of INEs for their stability over datasets. The second method enables evaluation of INEs for
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their stability over DR methods. In another recently completed investigation based on similar datasets, we
observed that the NBC, LVQ1, and SNG classifiers were more diverse (Kuncheva and Whitaker, 2003; Ivascu
et al., 2022) than the other classifiers employed, in that they maximized the variance over datasets and minimized
the generalization error (results not shown). Therefore, we elected to report only EWMV accuracy from these
3 classifiers for runs based on all DR methods, since the goal of this study was to investigate effects of DR on
classification, and not classifier diversity.

2.6. Parameter Studies

2.6.1. Arbitrary Number of Dimensions

A common guideline when using PCA for dimension/noise reduction is to extract PC vectors for dimensions
whose eigenvalues j > 1, which implies use of information from features that are correlated with other
features and are not unique. Such dimensions also contribute more to the variance explanation of the data
matrix X. While these assumptions may be helpful for PCA, they provide no basis for selecting informative
dimensions derived from the other DR techniques used in this investigation (Table 2).

2.6.2. Filtering for Significant Dimensions

We also explored the effects of filtering dimensions(features) that were significant predictors of class labels prior
to input into classification analysis. Nine dimension selection methods were used. The first four filtering methods
were based on one-against-all class comparisions (OAA) using the T-test, Mann-Whitney (MW) test, information
gain, and Gini index (Peterson et al., 2006; Peterson, 2013). Significance for the T-test and MW test were based
on two-tailed p < 0.05. The top N dimensions selected with information bias and Gini index were based on the
number of dimensions that were significant when using the MW test. The MW test was used as a basis for
information gain and Gini index because it is not susceptible to outliers or skewness. The second set of 4
filtering methods were based on all-possible-pairs (APP) class comparisons for the T-test, MW test, information
gain, and Gini index. The last dimension selection method was a greedy forward-reverse plus-take-away 1
method called GreedyPTA. GreedyPTA first invokes Mahalanobis distance to find the feature with the smallest
between-class distance, and then iterates using a balance between F-to-enter and F-to-remove criteria to
construct a full model with dimensions derived using Wilks’ Lambda statistic (Peterson, 2013).

2.7. Ablation Studies

2.7.1. Random Shuffling Within Dimensions

Random shuffling of values within dimension (features) was undertaken to study the effect of annihilation of
data informativeness for classification accuracy for the various DR methods and datasets used. Dimensions
were filtered by using the OAA-MW method. Random shuffling of values within each dimension first involved
setting the random seed to the CPU-clock’s current millisecond. Next, within each selected dimension, the ith
object’s values were shuffled with another randomly selected object if U(0, 1) < f, where f was 1/2k, and k = 1,
2, 3, 4, 5, 6. This represented object random sampling fractions of f = {0.5, 0.25, 0.125, 0.0625, 0.03125, 0.015625}.
When k = 7, no shuffling was performed.

2.7.2. Gaussian Smearing

Another ablation study involved adding Gaussian noise in an attempt to smear values within dimensions
prior to classification. Dimensions were filtered by using the OAA-MW method. Smearing was then

accomplished by adding standard normal 𝒩(0, 𝜎2) variates to each value of the selected dimension, where
= {10, 5, 1, 0.5, 0.1, 0.05}.

3. Results

3.1. Parameter Studies

3.1.1. Arbitrary Number of Dimensions

Figure 2 shows that, for an arbitrary number of dimensions from four datasets with the greatest number of
features, use of INEs as inputs to classification analysis performed better than the other DR techniques.
Results also indicate that at approximately 10 dimensions, the majority of DR methods seem to reach the
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maximum classification accuracy, hence the rule-of-thumb to use 10 PCs from PCA for input into classifiers
does seem to have merit for the datasets considered. An important observation was that the curvilinear
change in accuracy as a function of dimensions for INE was more stable when compared with other DR
methods.

Figure 2: Parameter Study Results: Effect of Arbitrary Number of Dimensions on Classification Accuracy for
Various DR Methods. Accuracy is Ensemble Weighted Majority Voting, EWMV, from 3 Classifiers (NBC,
LVQ1, SNG)

Figure 3: Parameter Study Results: Effect of Filtering Dimensions with Various Dimension Selection Methods
on Classification Accuracy for Various DR Methods. Accuracy is Ensemble Weighted Majority Voting,
EWMV, from 3 Classifiers (NBC, LVQ1, SNG)
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3.1.2. Filtering for Significant Dimensions

Figure 3 indicates that results of using various dimension selection techniques was quite similar, and use of
INEs as inputs to classification analysis resulted in better performance. This finding warrants use of OAA-
MW for the majority of dimension filtering for later classification runs, since its use would not upwardly bias
class prediction performance.

3.2. Ablation Studies

3.2.1. Random Shuffling - Stability of INEs vs. Other DR Methods

Figure 4 illustrates the classification accuracy as a function of random sampling fraction of objects during
shuffling of within-dimension values. The curvilinear change in accuracy with increasing random shuffling
fractions for INE was more stable when compared with other DR methods.

Figure 4: Ablation Study Results: Effect of Shuffling Within-Dimension Values on Classification Accuracy at
Various Object Random Sampling Fractions, f = {1/2, 1/4, 1/8, 1/16, 1/32, 1/64}. Dimensions Used were
Significant Predictors of Class Label via the OAA-MW Test (p<0.05). Accuracy is EWMV from 3 Classifiers
(NBC, LVQ1, SNG)
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3.2.2. Gaussian Smearing - Similarity of INEs with Other DR Methods

Figure 5 shows classification accuracy as a function of Gaussian smearing of within-dimension values.
Results indicate that, irrespective of the dataset, DR method, and value of unsmeared accuracy, the behaviour
of increasing annihilation of INEs was similar to and not substantially different from other smeared DR
methods.

Figure 5: Ablation Study Results: Effect of Gaussian Smearing of Dimension (Feature) Values on
Classification Accuracy After Adding Standard Normal Variates, 𝒩(0, 𝜎2), to Feature Values with = {10, 5, 1,
0.5, 0.1, 0.05}. Dimensions Used were Significant Predictors of Class Label via the OAA-MW Test (p<0.05).
Accuracy is EWMV from 3 Classifiers (NBC, LVQ1, SNG)
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3.3. All Classifiers - PCA vs. INE

Table 3 lists 10-fold CV accuracy results for all classifiers when PCA and INE were employed for DR, and
dimensions were normalized prior to DR, filtered using the OAA-MW method before class prediction, and
normalized during 10-fold CV. As one can note, use of the INEs resulted in improved classification accuracy
for all the classifiers. Mean accuracy for ensemble classifier fusion (EWMV) for all datasets when using PCs
was 84.5%, while mean accuracy when using INEs was 97.6%, indicating a 15.5% increase in performance. In
addition, the standard deviation (s.d.) of EWMV accuracy over all datasets was 0.134 for PCA and 0.078 for
INE, suggesting a 42% decrease. Regarding PCs, the SVM and SPSO classifiers had the worst performance,
while LDA and LVQ1 had the best. For INEs, PLOG and SPSO had the worst performance, and LVQ1 and
KNN classifiers performed the best. The decreased s.d. for INEs suggest greater stability over datasets.

3.4. Diverse Classifiers - All DR Methods vs. INE

Table 4 lists 10-fold CV accuracy results (EWMV only) for diverse classifiers (NBC, LVQ1, SNG) when all DR
methods were used prior to class prediction. In these runs, dimensions were normalized prior to DR, filtered
using the OAA-MW method before class prediction, and normalized during 10-fold CV. When averaged over
datasets, the INE DR method resulted in a mean EWMV accuracy of 0.97, while the remaining DR methods
resulted in mean accuracy ranged from 0.77 to 0.86. The s.d. of accuracy from use of INE was 0.08, while s.d.
for the remaining DR methods was nearly twice as great (0.14-0.16). The PCA DR method, which involved
selection of PCs that were significant predictors of class using filtering with OAA-MW prior to classification,
resulted in a mean accuracy of 0.83. This was only slightly greater than when using all signal PCs (0.8).
Typical class prediction results from selection of normalized input features (NORM DR method) resulted in

Table 3: Class Prediction Accuracya for All Classifiers and PCA and INE DR Methods

 Note: a – Accuracy based on 10-fold CV. – Dimension (feature) selection based on OAA-MW (p<0.05). All dataset features
normalized before DR and selected dimensions normalized during 10-fold CV.

DR 
Method 

Dataset KNN NBC LDA QDA LREG PLOG LVQ1 KREG SNG SANN SVM SPSO EMV EWMV 

PCs 

Breastca 0.635 0.697 0.650 0.657 0.679 0.704 0.668 0.718 0.614 0.682 0.697 0.650 0.679 0.693 
Cancer 0.943 0.910 0.960 0.950 0.957 0.967 0.964 0.923 0.970 0.967 0.914 0.959 0.966 0.967 

Dermatology 0.951 0.937 0.956 0.937 0.959 0.888 0.940 0.951 0.954 0.948 0.863 0.839 0.967 0.962 
Glass 0.621 0.547 0.589 0.551 0.542 0.561 0.682 0.607 0.579 0.593 0.136 0.477 0.664 0.673 

Heartdisease 0.566 0.502 0.589 0.539 0.589 0.609 0.535 0.556 0.431 0.603 0.475 0.559 0.603 0.603 
Hepatitis 0.900 0.863 0.888 0.900 0.900 0.900 0.913 0.825 0.863 0.875 0.463 0.888 0.900 0.900 

Ionosphere 0.863 0.895 0.849 0.689 0.852 0.852 0.858 0.556 0.840 0.858 0.903 0.775 0.872 0.875 
Iris 0.940 0.833 0.973 0.960 0.800 0.967 0.920 0.633 0.920 0.967 0.633 0.900 0.940 0.953 

Liver 0.574 0.681 0.681 0.678 0.667 0.672 0.652 0.580 0.609 0.591 0.626 0.661 0.672 0.675 
Optchar 0.952 0.902 0.964 0.970 0.948 0.948 0.974 0.964 0.974 0.816 0.874 0.268 0.980 0.982 

Pima 0.710 0.741 0.760 0.686 0.770 0.771 0.742 0.642 0.660 0.753 0.767 0.738 0.767 0.772 
Soybean 0.654 0.673 0.872 0.008 0.887 0.045 0.872 0.891 0.880 0.808 0.767 0.207 0.906 0.902 

Thyroidrecur 0.856 0.843 0.896 0.783 0.903 0.898 0.898 0.893 0.898 0.898 0.619 0.906 0.896 0.898 
Wine 0.972 0.927 0.978 0.983 0.978 0.966 0.966 0.933 0.961 0.966 0.860 0.978 0.978 0.978 

Average 0.796 0.782 0.829 0.735 0.817 0.768 0.827 0.762 0.797 0.809 0.686 0.7 0.842 0.845 
s.d. 0.159 0.143 0.146 0.263 0.145 0.25 0.143 0.163 0.18 0.143 0.218 0.247 0.136 0.134 

INEs 

Breastca 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.996 1.000 1.000 
Cancer 1.000 0.974 0.999 1.000 0.999 1.000 0.973 0.987 0.967 1.000 1.000 0.970 1.000 1.000 

Dermatology 0.978 0.978 0.973 0.992 0.964 0.989 0.989 0.997 0.981 0.992 0.975 0.973 0.986 0.986 
Glass 0.981 0.986 0.986 0.977 0.939 0.995 0.995 0.949 0.986 1.000 0.991 0.991 0.991 0.991 

Heartdisease 0.997 0.973 0.993 0.983 0.993 0.997 0.990 0.997 0.987 0.993 0.990 0.970 0.997 0.997 
Hepatitis 1.000 0.963 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.963 1.000 1.000 1.000 

Ionosphere 1.000 0.952 1.000 1.000 1.000 1.000 1.000 0.997 1.000 1.000 1.000 1.000 1.000 1.000 
Iris 1.000 0.907 1.000 0.967 0.993 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

Liver 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
Optchar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.684 1.000 1.000 

Pima 1.000 0.992 0.987 1.000 0.988 1.000 0.980 0.991 0.975 0.984 0.999 0.987 0.995 0.995 
Soybean 0.602 0.523 0.598 0.410 0.474 0.049 0.707 0.586 0.662 0.560 0.496 0.466 0.684 0.707 

Thyroidrecur 0.997 0.992 0.997 1.000 0.997 1.000 0.997 0.997 0.992 0.992 1.000 0.984 0.997 0.997 
Wine 0.994 0.994 0.994 1.000 0.994 0.994 0.994 1.000 0.994 1.000 1.000 1.000 0.994 0.994 

Average 0.968 0.945 0.966 0.952 0.953 0.93 0.973 0.964 0.967 0.966 0.958 0.93 0.975 0.976 
s.d. 0.106 0.124 0.106 0.156 0.139 0.254 0.077 0.11 0.089 0.117 0.133 0.157 0.084 0.078 
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a mean accuracy of 0.82. All together, these results suggest that input feature selection prior to class prediction
provides no substantial benefit when compared with the use of signal PCs for class prediction—for the 14
datasets considered. The decreased s.d. for INEs suggest greater stability over DR methods.

3.5. Dimension Plots for Various DR Methods

Line plots for a variety of DR methods for various datasets are shown in Figure 6. The first 3 plots for the 2-
class cancer dataset reveal the drastic differences in stability and informativeness for class-specific objects
among filtered normalized features (NORM), PCs (PCA), and INEs. The 2 plots for the 6-class dermatology
dataset reveal that, while the PSO DR method results in dimensions that discern class labels, the INEs are
more stable within classes. The two plots for the 6-class glass dataset indicate the UANN provided dimensions
that appear to be informative for class, but not as strongly as the INEs. Finally, the remaining plots for the the
10-class optchar dataset for grayscaled pixel values of hand-written digits {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} reveal that
the normalized pixel values are not nearly as informative for discerning class as the INEs are.

4. Discussion
Improved class prediction performance from using INEs for DR is primarily due to increased within-class
stability of estimates when compared with other DR methods. The increased stability of INEs based on lower
s.d. of accuracy and smoother curvilinear behavior when randomly shuffled is due to several factors. First,
positive values of INEs are enforced by use of normalized feature values with range [0, 1] in the numerator of
(12) along with a positive sign of eigenvector elements in the denominator. Through analogous borrowing
from root MUSIC, the denominator in (9) is the Euclidean distance (squared) from a vector y to the noise

eigenspace in the form 𝑑2 = 𝐲⊤𝐄𝑛𝐄𝑛
⊤𝐲 . Therefore, the noise component needs to be positive. Second, INEs

exploit the fact that the noise eigenspace varies over classes, and therefore they scale data values by noise
eigenvectors, which are much smaller than, for example, the much larger eigenvectors in the signal (correlation)
subspace employed by PCs from PCA. Third, the noise subspace is often larger than the signal space with
more orthogonal dimensions from which to capture the subtle class-specific differences. The overall advantage
for using INEs is that noise eigenvalues are smaller in magnitude, are more ubiqitous, and are unique to
classes. Therefore, scaling by stable-small noise eigenvectors yields stable ratios which inflate class differences.

Dropping features whose values are invariant within a class is another important characteristic of INEs.
Constant within-class feature values are present in the dermatology, glass, hepatitis, optchar, and soybean
datasets. Constant within-class feature values result in a standard deviation of zero. A zero standard deviation
leads to indeterminate correlation. Indeterminate correlation results in a correlation matrix with all zeroes in
the rows (columns) for such features. Subsequent eigendecompostiion of a correlation matrix with zeroed out

Table 4: Class Prediction Accuracy Based on EWMV from 3 Diverse Classifiers (NBC, LVQ1, SNG) for All DR
Methods. Numbers in Parentheses Indicate Dimensions Used

 Note: a – PCASIG method based on all p – mPC signal PCs, i.e., no dimension selection. b - NORM method based on
significant normalized input features (OAA-MW feature selection), not reduced dimensions. Dimension (feature)
selection based on OAA-MW (p<0.05). All dataset features normalized before DR and selected dimensions normalized
during 10-fold CV.

DR 
Method 

Breastca Cancer 
Derma- 
tology 

Glass 
Heart- 
disease 

Hepa- 
titis 

Iono- 
sphere 

Iris Liver Optchar Pima Soybean 
Thyroi- 
drecur 

Wine Avg s.d. 

PCA 0.68(3) 0.97(4) 0.95(15) 0.67(8) 0.52(8) 0.89(4) 0.87(7) 0.92(3) 0.66(4) 0.98(25) 0.74(6) 0.88(34) 0.90(6) 0.96(5) 0.83 0.15 

PCASIGa 0.68(1) 0.97(1) 0.92(4) 0.62(2) 0.57(2) 0.85(1) 0.86(5) 0.91(1) 0.53(1) 0.95(7) 0.70(2) 0.82(4) 0.89(2) 0.96(2) 0.8 0.15 

CKM 0.73(2) 0.96(6) 0.93(16) 0.64(8) 0.52(11) 0.88(7) 0.85(8) 0.96(4) 0.63(5) 0.97(26) 0.76(6) 0.90(31) 0.89(7) 0.90(10) 0.82 0.14 

UPSO 0.69(3) 0.97(6) 0.93(15) 0.62(8) 0.53(12) 0.75(8) 0.81(8) 0.91(4)  0.96(26) 0.69(6) 0.86(35) 0.88(8) 0.97(12) 0.81 0.14 

KGPCA 0.72(1) 0.97(3) 0.96(13) 0.62(7) 0.49(8) 0.81(5) 0.90(7) 0.95(4) 0.59(2) 0.98(27) 0.74(6) 0.88(30) 0.84(7) 0.98(6) 0.82 0.16 

DM 0.70(1) 0.79(1) 0.96(12) 0.48(7) 0.50(7) 0.83(2) 0.91(7) 0.91(3) 0.60(4) 0.98(26) 0.70(6) 0.89(30) 0.83(6) 0.72(4) 0.77 0.16 

UANN 0.73(3) 0.95(6) 0.92(17) 0.57(8) 0.52(11) 0.84(7) 0.85(8) 0.97(4) 0.61(2) 0.97(26) 0.70(5) 0.88(35) 0.87(7) 0.90(9) 0.81 0.15 

LEM 0.82(4) 0.98(6) 0.98(13) 0.70(7) 0.53(6) 0.84(6) 0.97(6) 0.97(4) 0.75(5) 0.98(24) 0.78(6) 0.93(30) 0.89(7) 0.98(6) 0.86 0.14 

SAMM 0.71(4) 0.96(6) 0.87(17) 0.61(8) 0.53(9) 0.90(7) 0.75(8) 0.94(4) 0.63(5) 0.76(26) 0.74(6) 0.69(26) 0.92(8) 0.88(12) 0.78 0.14 

NMF 0.73(1) 0.95(6) 0.91(16) 0.58(8) 0.53(10) 0.80(7) 0.83(8) 0.89(4) 0.67(4) 0.93(26) 0.70(6) 0.92(33) 0.85(8) 0.95(11) 0.8 0.14 

CMDS 0.73(1) 0.95(3) 0.93(12) 0.57(7) 0.53(8) 0.86(4) 0.83(7) 0.93(3) 0.69(4) 0.98(19) 0.75(5) 0.86(28) 0.88(7) 0.94(4) 0.82 0.14 

NORMb 0.73(2) 0.96(6) 0.93(16) 0.64(8) 0.52(11) 0.88(7) 0.80(1) 0.96(4) 0.63(5) 0.97(26) 0.76(6) 0.90(31) 0.89(7) 0.90(10) 0.82 0.14 

INE 1.00(4) 0.97(6) 0.99(9) 0.99(4) 0.99(11) 1.00(7) 1.00(8) 1.00(3) 1.00(5) 1.00(26) 0.98(6) 0.68(3) 0.99(8) 0.99(10) 0.97 0.08 
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Figure 6: Plots of Filtered Dimensions (OAA-MW) Used as Inputs to Class Prediction
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rows (columns) can result in eigenvalues of unity whose eigenvectors contain zero or near-zero values, for
example, in the range [0, 1E-14] depending on the software used. Dividing by zero eigenvector values in the
denominator of (12) is undefined, and division by near-zero eigenvector values, and then rescaling with log10

would result in artificially inflated INE values. If features with class-invariant values were not dropped, then
INEs would merely degenerate into a form of feature selection based on within-class invariance.

Results of using an arbitrary number of dimensions for datasets with the greatest number of features reveal
that the maximum value of class prediction accuracy is typically reached by use of 10 dimensions. For PCA,
this is in good agreement with the rule-of thumb that inputting 10 decorrelated PC vectors into a classifier will
maximize the performance. It was also observed that there was little difference between class prediction
performance based on use of different DR methods. Specifically, selecting PC vectors that were informative for
class separation via the OAA-MW test resulted in only a difference of 0.03 (0.83-0.80) when compared with
using signal PC vectors for classification. Hence, there is also merit for employing PC vectors in the signal
space for class prediction.

5. Conclusion

Until recently, pattern classification analysis has mostly focused on inputs derived from feature selection or
dimension reduction. However, there has been a lack of focus on use of the class-specific noise subspace of
correlation. We have shown that classification analysis of 14 datasets resulted in a 15.5% increase in class
prediction performance from 84.5% to 97.6% when using INEs compared with other DR Methods. In addition,
the standard deviation (s.d.) of accuracy over all datasets was 0.14-0.16 for other DR methods and 0.078 for
INE, suggesting a ~48% decrease. We advocate intraclass noise eigenspace projection for pattern classification
as an alternative to input feature selection or DR with other methods prior to classification analysis.
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