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Article Info

Abstract

Concerns about hardware security are raised by the increasing dependence on third-party
Semiconductor Intellectual Property in system-on-chip design, especially during physical
design verification. Traditional rule-based verification methods, such as Design Rule
Checking (DRC) and Layout vs. Schematic (LVS) checking, together with side-channel
analysis, indicated apparent deficiencies in dealing with new forms of threat. The
impossibility of distinguishing dependable from malicious insertions in ICs makes it hard
to prevent such dangers as Hardware Trojans (HTs); side-channel vulnerabilities remain
everywhere, and modifications at various stages of the manufacturing process can be hard
to detect. This research addresses these security challenges by defining a theoretical AI
driven framework for secure physical design verification that couples Graph Neural
Network models (GNNs) and probabilistic modeling with constraints optimized to
maximize IC security. Also, we can model mathematical foundations for the secure routing
as a constrained path finding problem for all myths addressed above concerning these
different methods-moves are optimized to avoid sources of security problems. These
problems might include crosstalk-induced leakage and electromagnetic side-channel threats.
As an alternative to experience-based anomaly detection proposed in earlier work, a
theoretical softmax based anomaly classification framework is put forward here to model
HT insertion probabilities, gathering acceptable anomalies at various levels of circuit
design from RTL level to Gate-level as necessary. This theoretical framework provides a
conceptual methodology for scalable, automated, and robust security verification in modern
ICs through graph-based learning, and constrained optimization methods. It lays a
foundation to advance secure semiconductor designs further using AI-driven techniques
without recourse to benchmarks or empirical validations.
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1. Introduction

This quickening development of semiconductor expertise particularly increases the fears about hardware security for

physical design inspection. Hardware security testing practices are based on patterns. Still, as increasingly sophisticated

attackers have demonstrated, they are no match for Trojan horses built into hardware, side-channel vulnerabilities,

post-layout hidden mods, and so on (Faezi et al., 2021).

These methods also concentrate on functional correctness and manufacturability more than dynamic security risks,

which arise at every stage of the design process, from Register Transfer Level (RTL) to layout synthesis (Yasaei et al.,

2021). Since most design engineers are not particularly familiar with security at System-on-Chip, this situation will

improve. In turn, however, it will have little effect on the fact that we can’t trust others to build our chips, and there are

particular security loopholes in this Golden Reference Model-based chip.

Semiconductor Manufacturing makes the increasing integration of designs from third-party suppliers possible,

bringing risks of nonstandard golden reference-based security models (Hasegawa et al., 2022).

This paper introduces a new technique for security model validation based on a cross-layer, AI-driven, theoretical

verification method that employs Graph Neural Networks (GNNs) in Reinforcement Learning (RL) and constrained

optimization. By treating security verification like a graph-based learning problem, these methods systematically analyze

structural weaknesses, unauthorized routing changes, and design modifications introduced by opponents (Lashen

et al., 2023). Moreover, secure route optimization is developed as a problem for reinforcement learning to solve. In this

approach to layout, the learning agent minimizes EM (electromagnetic) leakage and crosstalk-induced side hazards

without sacrificing manufacturability while maintaining layout quality (Dey et al., 2022).

This theoretical model spans every abstraction layer, increasing independence from justification and golden reference

models and thus yields reliable scalability and usability (Yasaei et al., 2022).

1.1. Key Challenges

Conventional security check methods have severe defects. They are reactive, which means they can only find known

threats based on predefined confirmations. Because of this, no known attack vectors are in operation, and one never

knows whether an HT exists. Deviating from this approach may prove dangerous for new insertion techniques and

covert channels.

However, yet unseen adversarial changes mean the rule-based check engine fails to cover these. Moreover, in

modern IC verification process flows, which check for design rule observation, Layout vs. Schematic (LVS) concurrence,

and timing closure, implications of the stealthy hardware modifications occurring in every development phase are

frequently ignored (Alrahis et al., 2022). A further obstacle is the reliance on golden reference models, which presumes

a trustworthy, HT-free starting design exists. However, in the outsourced IC manufacturing setting, it is impossible to

get such security references, making traditional mechanical methods or even recent models from effective analysis

ineffective against the new types of attacks (Parikh and Parikh, 2025).

Finally, hardware security problems go beyond HT detection. They embrace IC cloning, malicious modifications,

side channel leakage attacks, supply chain risk, and a dozen other issues. For these, we need a strategy driven by self-

adaptation rather than intelligence (Yasaei et al., 2025). Most current work on hardware safety tries to harness lightweight

PUFs for authentication and models from machine learning-resistant cryptography to prevent key extraction attacks

(Alrahis et al., 2021). However, these methods cannot frequently adapt to new threats. At most, they apply machine

learning to search for new approaches (Yao et al., 2019). Emerging AI-driven security approaches provide dynamic

anomaly detection and reinforcement learning-based security optimization to ease these ills.

AI-based frameworks that model IC layouts as heterogeneous graphs can learn hidden security trends, discover

unallowable routing changes, and expose adversarial changes typically left uncovered by traditional rule-based systems

(Hasegawa et al., 2017).
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1.2. Scope of the Paper

The paper formalized a cross-layer AI-driven security verification framework that tackles the problems of regular

hardware security models. The model rethinks hardware security verification of ICs along the following avenues:

1. Graph Neural Networks (GNNs) for Security-aware Anomaly Detection:

• Facilitates circuit-level inconsistencies arising from Trojan insertions and stealthily modified routing.

2. AI-enhanced Design Rule Checking or Rule Closing Procedure (AI-DRC):

• This design begins with hand-picking matters (probabilistic) that can lead to security violations.

• Moves beyond judgment on a static set of rules, looking ahead to whether security violations result from their

application.

3. Security-aware Routing Optimization:

• Under the framework of reinforcement learning-based dynamic path selection.

• Minimizes adjacent noise and parasitic power.

• Reduces the switching speed of crosstalk and number rays by prioritizing EM dissipation levels.

4. This improves security vulnerability.

5. Lagrange Multiplier-based Constrained Optimization:

• Employed to make security constraints uniformly enforced mathematically.

• Ensures scalability and achieves efficiency.

6. Softmax Basis for Trojan Detection:

• Security scores are propagated through GNN node embeddings on an IC layout graph.

• Nodes are classified as benign or compromised.

The verification model proposed in this paper is based on AI and eliminates the reliance on padding or padding

layers. Without artificially assisted judgment (golden references), future chip manufacturing processes are ensured to

have fewer determinable security testing points.

1.3. Significance of Study

The significance of this study lies in its ability to embed AI-driven, probabilistic security verification methods across

multiple layers, surpassing traditional rule-based verification systems (Faezi et al., 2021; Yasaei et al., 2025). With fast-

moving hardware security risks, traditional pattern-based checking techniques cannot meet the increasing complexity

of attacks from adversaries, including hardware Trojans (HTs), side-channel vulnerabilities, and victim layout retrofits

that fall beyond their scope (Hasegawa et al., 2017; Lashen et al., 2023).

The next generation of integrated circuits requires that the system be adaptive, and that AI-style dynamically

assess risks and deploy proper measures for real-time responses against such attacks (Dey et al., 2022). In trying to

improve current verification techniques, Graph Neural Networks (GNNs) have emerged as a very effective hardware

verification tool for finding malfunctions. GNN-based anomaly detection differs from traditional heuristic models because

it enables mathematical modeling and categorization without reliance on pre-labeled empirical data sets, which are

typically narrow in scope and have dubious applicability (Yasaei et al., 2025; Kiruthika et al., 2025). This simplifies and

promotes verification automation in hardware security research, which greatly reduces reliance on human annotations

in safety IC processes.

FEXT optimization for secure routing is essential to minimizing EM leakage and crosstalk-induced risks. Routing

paths based on AI and security measures of reinforcement learning can adapt dynamically and optimally while conforming
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to performance demands and safety constraints. Such methods raise the security resistance level of

semiconductor designs, which has long been a thorny problem in the struggle for traditional security

verification.

In a scalable AI-based intelligent IC verification process, introducing collaborative security through federated

learning will let semiconductor foundries anonymously share any discoveries among them without fear of publicizing

proprietary design. This decentralized learning mode enhances the overall security environment for semiconductors

worldwide, with participants able to respond collectively and still preserve proprietary rights in their work. It

reduces security defects at multiple fabrication points—which means it is possible to enter prevention work at an

early stage of risk before there is any chance that an attack vector may be developed (Klambauer et al., 2017; He et al.,

2019).

This report lays out a large-scale and theoretically sound framework for creating trusted semiconductor manufacturing

installations by employing AI-driven models in hardware security authentication rather than those that rely merely on

rules. Plus, it raises questions regarding the future of cloud-based security infrastructures and AI-assisted verification

models—not only in detecting hardware Trojans but also in creating dependable semiconductor safety solutions

(Parikh and Parikh, 2025).

2. Methodology and Implementation

To formally verify the security, an Integrated Circuit (IC) is converted into a multi-layer heterogeneous graph. In this

graph, the nodes are actual circuit components such as gates and vias—physical points where wires cross inside metal

layers (this layer’s attribute)—and connections between them are represented by edges. Each DRC rule is converted to

a requirement function that a subset of the IC graph must meet; in this way, the design only passes verification if all

restraints are satisfied.

 
1,

0,i

if DRC rule i is satisfied
R G

Otherwise


 


The overall DRC compliance function is given by:

   
1

N

i
i

R G R G




where N is the total number of DRC rules, ensuring that a design passes DRC verification only when all rules

hold true.

2.1. Design Rule Checking (DRC) Compliance Function

The DRC compliance function can be represented as:

G = (V, E, L)

• V consists of nodes such as gates, vias, and interconnections.

• E is a collection of edges corresponding to the metal layers and routing interconnections on an integrated circuit.

• L indicates layer-specific information like diffusion and polysilicon.

Incidentally, it will be conducive to simplifying the subsequent discussion if we refer to different designs by

numerical indices, but hereafter, we shall use the abbreviation ‘the unnumbered point’ for just such a node.

For LVS verification, we cast the problem as a graph-isomorphism test: the schematic net list graph G
S
 must match

the net list layout-and-extractor graph G
L
. We name a function  for this mapping: a match function must check (5) at

each node:

: , ,S L S LG G v V v V      , where (v) = v
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The LVS violation function measures discrepancies:

 
1

,
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i i
S L
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where (x, y) returns 1 if the two nodes do not match, otherwise 0. If > 0, a mismatch is detected, failing LVS verification

(Lashen et al., 2023). To address LVS verification challenges, we define the problem as a graph isomorphism check

between the schematic net list graph G
s 
= (V

s
, E

s
) and the layout-extracted net list graph G

l 
= (V

l
, El). A mismatch function

V
diff

 = V
s
 – V

l 
is used, where a non-empty V

diff
 indicates a failure in LVS verification.

Routing security is addressed through applying AI-driven optimization to mitigate crosstalk, electromagnetic (EM)

leakage, and side-channel risks. Routing should be made into a Constrained Shortest-path Problem: we aim to minimize

the following expression on routing distance:

 
 

*

,
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where P represents all possible paths, and w(u, v) represents the routing cost considering wire length, congestion, and
security risks. A security-aware routing function minimizes:

     
 

1 2
,

, ,
u v P

S P crosstalk u v EM leakage u v 


  

with the total cost function:

     ,C P w u v S P  

ensuring that the AI-based routing engine optimizes performance while maintaining security constraints (Dey et al.,

2022).

The parameters  and  serve as weighting coefficients that regulate the balance between two distinct components.

The coefficient  determines the contribution of this term to the overall cost function. By adjusting  and , one can

prioritize different aspects of the problem, making these parameters crucial in tuning the behavior of the objective

function in applications such as machine learning, optimization, or graph-based modeling.

Graph Neural Networks (GNNs) play a crucial role in anomaly detection and layout learning. Each node feature is

updated iteratively using:

   

 

1t t
v uv u

u N v
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where W is a trainable weight matrix,  is an activation function, and N(v)represents the neighboring nodes of v. This

enables GNNs to identify structural anomalies introduced by hardware Trojans (Yasaei et al., 2025). Score functions

determine whether a circuit component is secure or compromised. The probability of a secure design is modeled using

an energy-based function:

   1 E XP X e
Z



Security Score (Softmax Classification)—where z
i
 is the logit value for secure classification.
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E(X) quantifies deviation from verified designs. An anomaly score is computed as:

       ~X P XA X E X E X     E

where a higher A(X) value indicates potential security risks (Kiruthika et al., 2025). Federated learning further enhances
verification by training AI models across multiple fabrication sites while preserving data privacy. The federated learning
update rule aggregates local models:

   1

1

N
t ti

i
i

m

M
 





where i(t) are local model weights, and m
i
 are the samples per fabrication node, ensuring collaborative, privacy-

preserving training.

For AI-driven security verification, Graph Neural Networks (GNNs) are employed to analyze circuit layouts, leveraging
adjacency matrices A and node attributes X. The node feature updates follow the propagation rule:

      1l l lH AH W  

where H(l) is the node representation at layer l, W(l) is the trainable weight matrix,  is the activation function, and A is the
normalized adjacency matrix .

For stable learning, we impose:

  2

1

L
l

l

W 




where  is a bound ensuring weight stability. The Eigen value decomposition of A~ guarantees that propagation does
not lead to vanishing or exploding gradients, ensuring that the model effectively learns circuit vulnerabilities.

Anomalous circuit modifications are detected using an energy-based function:

   E G
secureP G e

where E(G) quantifies deviations from expected circuit layouts, and a higher energy score indicates security threats.
Federated learning is incorporated to train AI models across multiple fabrication sites, ensuring privacy-preserving
security updates. The global model aggregation follows:

1

N
i

t i
i

n
w w

n



where w
i 
are local model weights, n

i 
is the sample size at site i, and N is the total number of participating sites.

In a case study involving an AI-based hardware Trojan detection system applied to a 4-bit ALU, the methodology
identifies a malicious XOR gate modification in the carry path. The extracted net list graph G

mod
 is compared with the

original schematic graph G
orig

 and a classification function:

 |
i

j

z

z

j

e
P T G

e



predicts the likelihood of a node belonging to a Trojan circuit. The AI model achieves high detection accuracy by
leveraging node embeddings and anomaly classification.

Mathematical optimization plays a crucial role in ensuring secure physical design. A cost function is defined as:

    
1

, ;
m

i i
i

J L y f x 
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where L is the loss function, y
i
 are ground truth labels, and f (x

i
;
 
) is the security-aware predictor. Security constraints

are enforced using Lagrange multipliers:

     , |L J C G    

ensure optimal security-aware verification.

Additional optimization techniques include adversarial robustness strategies such as adversarial training using an
attack-resilient Trojan Classification Distance (TCD):

   1
, log

t

t t

t e
e Et

TCD E f f x
E






 

where  determines the sensitivity to adversarial modifications. Reducing TCD 
minimizes false positives while enhancing

Trojan detection reliability.

The AI-driven secure physical design verification framework integrates these mathematical models and learning
techniques, ensuring scalable and adaptive security verification for modern semiconductor manufacturing.

A case study involving hardware Trojan detection in a 4-bit ALU illustrates the framework’s effectiveness. A Trojan
is inserted by modifying the carry path of a full adder with an XOR gate, altering graph structure and connectivity. GNN-
based anomaly detection identifies unexpected XOR insertions by comparing extracted net list graphs:

   | o vP Trojan v softmax W h 

where W
o
 represents final classification weights, and h

v 
is the GNN-learned embedding for node v. The AI model

successfully flags Trojan nodes with a probability of 0.97, demonstrating high detection accuracy (Parikh and Parikh,
2025).

To ensure constraint-aware verification, AI-based mathematical optimization is employed. The cost function
incorporates DRC, LVS, and routing constraints:

        1 2 3
1

N

DRC i LVS i R i
i

J V G V G V G   


  

where each term quantifies security violations in DRC, LVS, and routing. The Lagrange optimization formulation is
defined as:

     L J C G      

where  is a Lagrange multiplier enforcing security constraints. The optimization satisfies Karush-Kuhn-Tucker (KKT)
conditions:

       0, 0, 0J C G C G C G       

ensuring provably secure verification while maintaining design performance. By integrating AI-driven anomaly detection,
secure routing optimization, and mathematical modeling, this framework provides a scalable, automated, and adaptive
approach to IC security verification. The AI-driven methodology continuously evolves, ensuring that security verification
adapts dynamically to counter emerging threats, making it an essential part of next-generation semiconductor
manufacturing.

For large-scale ICs, computational overhead is a concern. The complexity of GNN training is approximately:

 V E

where |V| and |E| are the number of nodes (gates) and edges (interconnects). Compared to traditional rule-based
verification, which has an exponential complexity for large-scale circuits, the proposed model scales efficiently.
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3. Evaluation based on Aggregator, Combination, and Readout Functions

The multi-view verification method presents a system supporting a layered layout such that evaluation criteria are
discernible from the structure itself. The nodes of the graph are the components of the circuit, and the links are how they
are laid out and connected.

The capabilities of the verification method can be accessed via aggregator functions, combination functions, and a
readout. In this way, the model can capture a circuit’s local and global context.

Aggregator functions are employed in Graph Neural Networks (GNNs) to collect and summarize information from a
user’s neighbors, thereby allowing the model to learn local characteristics in IC layouts. Where hv(t + 1) is the updated
feature of node v, N(v) represents neighboring nodes, and AGG is the aggregation function. Many common aggregators
include:

       1 |t t
v uh AGG h u N v  

where hv(t+1) is the updated feature of node v, N(v) represents neighboring nodes, and AGG is the aggregation function.
Common aggregators include:

Mean Aggregator (Averaging Neighbor Features)

 

 
 

 

1 1t t
v u

u N v

h h
N v





 

This smoothens node features, reducing noise in circuit layouts (Faezi et al., 2021).

Max Pooling Aggregator (Capturing Maximum Influence)

 
 

   1 max Ret t
v u

u N v
h LU Wh




This highlights dominant neighbor features, useful in Trojan detection.

LSTM-Based Aggregator (Capturing Sequential Dependencies)

      1 |t t
v uh LSTM h u N v  

Useful for modeling propagation effects in circuit timing analysis.

Combination Functions: After all the aggregation is done, the combination function ensures that the updated node
representation retains its original property and can reflect neighbors’ influence. Where standard COMBINE functions
include:

     1 ,t t agg
v v vh W COMBINE h h  

where common COMBINE functions include:

Concatenation: This retains distinctive self-information and neighborhood context.

    , ||t tagg agg
v v v vCOMBINE h h h h   

Weighted Sum: Useful when balancing local vs. global importance in verification.

    
1 2,t tagg agg

v v v vCOMBINE h h W h W h 

Residual Connection (Skip Connection): Helps stabilize deeper GNN layers, preventing gradient vanishing.

      , Ret tagg agg
v v v vCOMBINE h h h LU Wh 
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Readout Functions: These aggregate node embeddings into a global view of all nodes on the circuit, permitting the
highest-level classification or verification. Standard READOUT functions include:

  |G vh READOUT h v V 

Sum Readout: This method works when nothing and gates the need as trivial, such as in Trojan localization.

G v
v V

h h




Mean Readout: The node layout is balanced so that this method becomes effective.

1
G v

v V

h h
V 

 

Max Pooling Readout: This identifies the dominant security issues and makes them easy to spot in local Trojan
detection.

maxG v
v V

h h




Attention-Based Readout: Here, the attention weight áv assigning values to different nodes gives adaptive verification
the chance of improvement (Dey et al., 2022).

G v v
v V

h h




4. Comparison with Existing Models

AI-driven secure physical design verification, which is a burgeoning field, has been directly addressed by several

research efforts. They resorted to rule-based methods, machine learning, and hybrid techniques for hardware security

challenges. Anomaly detection and specifically constrained optimization based on GNNs proposes a new method since

existing methods lack many aspects that will be key for the future: federated learning, policies learning involving

security for the route itself (routing security), and AI-based Design Rule Checking (DRC) (Table 1).

Methodology Strengths Limitations How Our Model Improves 

Golden reference-
based verification 

High accuracy 
for known 

threats 

Requires trusting chips, 
and outsourced design 

cannot be accommodated 

Our model eliminates the dependency on 
golden reference by employing AI-based 

anomaly detection. 

Machine Learning 
(ML) for security 

verification 

Adaptable to 
emerging threats 

Fields require large 
amounts of labeled data. 

Our GNN-based framework uses graph 
structure learning to achieve larger 

generalization 

SAT-based Trojan 
detection 

Effective for 
combinational 

Trojans 

Fails on HTs (both 
sequential and deep). 

Our approach uses deep learning to capture 
structural and behavioral anomalies. 

Side-channel 
analysis for 

hardware security 

Detects Trojans 
via power/EM 

signatures 

Minor errors in the data or 
disturbances caused by 

environmental constraints 

To mitigate side-channel hazards, our 
framework integrates power/routing 

optimization based on AI. 

Table 1: Comparison with Existing Models

5. Future Directions

Although the paper is theoretical, discussing how this model could be implemented in real-world EDA tools would
enhance its applicability (Table 2).
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• Computational Overhead: AI models require high-performance GPUs for training, yet one can use FPGAs to implement
them in a real-time security monitoring application.

• Compatibility with Commercial Foundries: A federated learning approach ensures one can train AI models across
different IC manufacturers while keeping the design confidential.

Discussing real-world feasibility ensures that the theoretical framework has practical adoption potential.

6. Conclusion

The proposed AI-driven secure physical design verification framework adopts graph-based learning, constrained
optimization, and federated AI anomaly detection as a theoretical foundation for next-generation IC security verification.
Modeling IC verification as an adaptive security-aware optimization problem removes any dependence on so-called
golden reference models and ensures that porting-level issues are adequately addressed under pressure from
implementation considerations. Future research directions should focus on:

Quantum-Resilient IC Security: Extending the AI model to verify quantum-secure cryptographic designs.

Adversarial AI Training for Hardware Security: Enhancing model robustness against adversarial attacks that try to
evade anomaly detection.

Integration with Cloud-Based EDA Platforms: Making it possible for IC manufacturers to use scalable and distributed
methods in constructing their security environments.

By offering a mathematically rigorous and scalable security model, this paper provides a path for semiconductor
manufacturers to move to AI, the trusted assistant.
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